People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lu, Zenghai
University of Huddersfield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Towards in-situ process monitoring in selective laser sintering using optical coherence tomography
Abstract
<p>Selective laser sintering (SLS) enables fast, flexible and cost-efficient production of parts directly from 3D CAD data. However, compared with more established machine tools, there is a marked lack of process monitoring and feedback control of key process variables to optimize production parameters in-situ. We apply optical coherence tomography (OCT) to evaluate components produced by SLS and suggest a route for its application in in-situ process monitoring within the SLS tool for real-time monitoring of the SLS process for assurance, or even dynamic correction of defects during the build. OCT is shown to be a viable technique for evaluation of both surface and sub-surface features built into a part either by design or from poor sintering or non-homogeneous powder spreading. We demonstrate detection and quantification of surface defects on a ∼30 μm scale in a Polyamide (PA2200) part, resolving 'built-in' fine features within a 200 to 400μm depth below the surface.</p>