People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Riva, Marco
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2016Integrate modelling of smart structures for astronomy: design future technologies
- 2016Smart telescope for astronomy
- 2014Integrated modeling for parametric evaluation of smart x-ray opticscitations
- 2013Lagoudas model for optomechanical mountings: parametric study and characterization campaign
- 2012Shape memory alloys for astronomical instrumentation: space and ground-based applications
- 2010Smart structures for deformable mirrors actuated by shape memory alloycitations
- 2009Carbon Fiber-Reinforced Smart Laminates with Embedded SMA Actuators—Part II: Numerical Models and Empirical Correlationscitations
- 2009Shape memory composite deformable mirrorscitations
- 2009Carbon Fiber Reinforced Smart Laminates with Embedded SMA Actuators—Part I: Embedding Techniques and Interface Analysiscitations
Places of action
Organizations | Location | People |
---|
document
Integrate modelling of smart structures for astronomy: design future technologies
Abstract
The astronomical instrumentation needs high level of image quality and stability. The quality of images processed by an optical instrument can be referred to the size of the spot and/or the point spread function (p.s.f.), while the stability is related to the displacement of the spot centroid during the observations. The importance of new design procedures for astronomical instruments through the direct design of the materials taking into account their functionalities integrating different approaches (FEM + raytracing) is then enhanced by the new upcoming requirement. Different functional materials can be joined together exploiting each peculiar property in order to realize an integrated structure better known as Smart Structure. They are capable of sensing and reacting to their environment in a predictable and desired manner, through the integration of various elements, such as sensors, actuators, power sources, signal processors, and communications network. The Paper describes possible application related to two main functional materials: piezoelectric materials and Shape Memory Alloys....