People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mathew, Jinesh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Laser Powder Bed Fused Parts made of SS316 with Embedded Fibre Optic Sensors for Temperature Monitoring up to 1000°Ccitations
- 2017Integrating fiber Fabry-Perot cavity sensor into 3-D printed metal components for extreme high-temperature monitoring applicationscitations
- 2016Embedding fibre optical sensors into SLM parts
- 2016Stainless steel component with compressed fiber Bragg grating for high temperature sensing applicationscitations
- 2015Measuring residual stresses in metallic components manufactured with fibre bragg gratings embedded by selective laser meltingcitations
- 2015SS316 structure fabricated by selective laser melting and integrated with strain isolated optical fiber high temperature sensorcitations
- 2015In-situ strain sensing with fiber optic sensors embedded into stainless steel 316citations
- 2014In-situ measurements with fibre bragg gratings embedded in stainless steelcitations
Places of action
Organizations | Location | People |
---|
document
Measuring residual stresses in metallic components manufactured with fibre bragg gratings embedded by selective laser melting
Abstract
<p>Metal clad single mode optical fibres containing Fibre Bragg Gratings are embedded in stainless steel components using bespoke laser based Selective Laser Melting technology (SLM). Significant residual stresses can be created in SLM manufactured components through the strong thermal gradients during the build process. We demonstrate the ability to monitor these internal stresses through embedded optical fibres with FBGs on a layer to layer basis, confirming estimates from models for residual stresses in additive manufactured components.</p>