Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Leese, M.

  • Google
  • 2
  • 31
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024PROSPECT: A comprehensive sample acquisition and analysis package for lunar science and exploration6citations
  • 2015Proton irradiation of the CIS115 for the JUICE mission6citations

Places of action

Chart of shared publication
Gow, Jason
1 / 2 shared
Stefanov, Konstantin
1 / 1 shared
Holland, A. D.
1 / 3 shared
Allanwood, E. A. H.
1 / 1 shared
Soman, Matthew
1 / 4 shared
Winstone, G. P.
1 / 1 shared
Chart of publication period
2024
2015

Co-Authors (by relevance)

  • Gow, Jason
  • Stefanov, Konstantin
  • Holland, A. D.
  • Allanwood, E. A. H.
  • Soman, Matthew
  • Winstone, G. P.
OrganizationsLocationPeople

document

Proton irradiation of the CIS115 for the JUICE mission

  • Gow, Jason
  • Stefanov, Konstantin
  • Holland, A. D.
  • Allanwood, E. A. H.
  • Leese, M.
  • Soman, Matthew
  • Winstone, G. P.
Abstract

The CIS115 is one of the latest CMOS Imaging Sensors designed by e2v technologies, with 1504x2000 pixels on a 7 μm pitch. Each pixel in the array is a pinned photodiode with a 4T architecture, achieving an average dark current of 22 electrons pixel<sup>-1</sup> s<sup>-1</sup> at 21°C measured in a front-faced device. The sensor aims for high optical sensitivity by utilising e2v’s back-thinning and processing capabilities, providing a sensitive silicon thickness approximately 9 μm to 12 μm thick with a tuned anti-reflective coating. <br></br><br></br>The sensor operates in a rolling shutter mode incorporating reset level subtraction resulting in a mean pixel readout noise of 4.25 electrons rms. The full well has been measured to be 34000 electrons in a previous study, resulting in a dynamic range of up to 8000. These performance characteristics have led to the CIS115 being chosen for JANUS, the high-resolution and wide-angle optical camera on the JUpiter ICy moon Explorer (JUICE). <br></br><br></br>The three year science phase of JUICE is in the harsh radiation environment of the Jovian magnetosphere, primarily studying Jupiter and its icy moons. Analysis of the expected radiation environment and shielding levels from the spacecraft and instrument design predict the End Of Life (EOL) displacement and ionising damage for the CIS115 to be equivalent to 10<sup>10</sup> 10 MeV protons cm<sup>-2</sup> and 100 krad(Si) respectively. Dark current and image lag characterisation results following initial proton irradiations are presented, detailing the initial phase of space qualification of the CIS115. Results are compared to the pre-irradiation performance and the instrument specifications and further qualification plans are outlined.

Topics
  • impedance spectroscopy
  • phase
  • liquid-assisted grinding
  • Silicon