People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mathew, Jinesh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Laser Powder Bed Fused Parts made of SS316 with Embedded Fibre Optic Sensors for Temperature Monitoring up to 1000°Ccitations
- 2017Integrating fiber Fabry-Perot cavity sensor into 3-D printed metal components for extreme high-temperature monitoring applicationscitations
- 2016Embedding fibre optical sensors into SLM parts
- 2016Stainless steel component with compressed fiber Bragg grating for high temperature sensing applicationscitations
- 2015Measuring residual stresses in metallic components manufactured with fibre bragg gratings embedded by selective laser meltingcitations
- 2015SS316 structure fabricated by selective laser melting and integrated with strain isolated optical fiber high temperature sensorcitations
- 2015In-situ strain sensing with fiber optic sensors embedded into stainless steel 316citations
- 2014In-situ measurements with fibre bragg gratings embedded in stainless steelcitations
Places of action
Organizations | Location | People |
---|
document
In-situ strain sensing with fiber optic sensors embedded into stainless steel 316
Abstract
<p>Fiber Bragg Grating (FBG) sensors are embedded into Stainless Steel (SS) 316 components using bespoke Selective Laser Melting (SLM) technology. SS 316 material is added on substrates by SLM, incorporating U-shaped grooves with dimensions suitable to hold nickel coated optical fibers. Coated optical fibers containing fiber Bragg gratings for strain monitoring are placed in the groove. Melting subsequent powder layer on top of the fiber completes the embedding. Strain levels exceeding 3 m epsilon are applied to specimens and are measured by embedded fiber optic sensors. Elastic deformation of the steel component is reliably measured by the Bragg grating from within the component with high accuracy. During plastic deformation of the steel the optical fiber is slipping due to poor adhesive bonding between fused silica and metal surround.</p>