People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Demarina, Natalia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Spin injection and spin-orbit coupling in low-dimensional semiconductor nanostructures
Abstract
Due to their strong spin-orbit coupling III-V semiconductor nanowires are excellent candidates for electrical spin manipulation. Therefore, a major goal is to tailor spin-orbit coupling in these devices. Direct electrical spin injection into quasi one-dimensional nanowires is demonstrated. Furthermore, the weak antilocalization effect was investigated in InAs nanowires. The quantum corrections to the conductivity are interpreted by developing a quasi-one-dimensional diffusive model. It turns out that by means of doping and electric gating the spin-lifetimes can be tuned significantly. By creating few-electron quantum dots inside these devices the impact of the confinement on the spin relaxation properties is investigated....