Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Führer, Thorsten

  • Google
  • 1
  • 6
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014A laser locked Fabry-Perot etalon with 3 cm/s stability for spectrograph calibration15citations

Places of action

Chart of shared publication
Schwab, Christian
1 / 5 shared
Walther, Thomas
1 / 13 shared
Quirrenbach, Andreas
1 / 1 shared
Gurevich, Yulia V.
1 / 1 shared
Stürmer, Julian
1 / 1 shared
Lamoreaux, Steve K.
1 / 1 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Schwab, Christian
  • Walther, Thomas
  • Quirrenbach, Andreas
  • Gurevich, Yulia V.
  • Stürmer, Julian
  • Lamoreaux, Steve K.
OrganizationsLocationPeople

document

A laser locked Fabry-Perot etalon with 3 cm/s stability for spectrograph calibration

  • Schwab, Christian
  • Walther, Thomas
  • Quirrenbach, Andreas
  • Gurevich, Yulia V.
  • Stürmer, Julian
  • Führer, Thorsten
  • Lamoreaux, Steve K.
Abstract

Accurate wavelength calibration is crucial for attaining superior Doppler precision with high resolution spectrographs. Upcoming facilities aim for 10 cm/s or better radial velocity precision to access the discovery space for Earth-like exoplanets. To achieve such precision over timescales of years, currently used wavelength cal- ibrators such as thorium-argon lamps and iodine cells will need to be replaced by more precise and stable sources. The ideal wavelength calibrator would produce an array of lines that are uniformly spaced, narrower than the spectrograph resolution, of equal brightness, cover the entire wavelength range of the spectrograph, and whose frequencies do not change with time. Laser frequency combs are an extremely accurate and stable, albeit technically challenging and costly, option that has received much attention recently. We present an alter- native method that uses a Fabry-Perot (FP) etalon illuminated by a white light source to produce a comb-like spectrum over a wide wavelength range. Previous work focused on the development of passively stabilized FP etalons for wavelength calibration. We improve on this method by locking the etalon to an atomic transition, the frequency of which is known to &lt; 2 x 10<SUP>-11.7</SUP> We use a diode laser to observe both the rubidium (Rb) D<SUB>2</SUB> transition at 780 nm and the etalon transmission spectrum. Saturated absorption spectroscopy is used to resolve the Rb hyperfine lines and precisely determine their locations. Since the etalon spectrum is probed with the same laser, the etalon can be locked by ensuring that one of its transmission peaks coincides with a particular Rb hyperfine peak (via either temperature tuning or a piezoelectric transducer incorporated into the etalon). By measuring the frequency of one etalon peak directly via comparison with the Rb, we remove any drifts or aging effects of the etalon that could cause problems for passively stabilized etalon references. We demonstrate a locking precision that is equivalent to a Doppler precision of 3 cm/s RMS. Our setup is simple and robust, can be used with various etalons, and works in the infrared as well as the visible part of the spectrum. The combination of low cost, ease of use, and high precision make this calibration system an attractive option for new spectrographs and as a retrofit for existing facilities....

Topics
  • impedance spectroscopy
  • aging
  • aging
  • Rubidium
  • diffuse reflectance infrared Fourier transform spectroscopy
  • Thorium