People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bundalo, Ivan-Lazar
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2017Long-term strain response of polymer optical fiber FBG sensorscitations
- 2017Fibre Bragg Grating and Long Period Grating Sensors in Polymer Optical Fibres
- 2015Angle dependent Fiber Bragg grating inscription in microstructured polymer optical fiberscitations
- 2014PMMA mPOF Bragg gratings written in less than 10 mincitations
- 2014Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutescitations
Places of action
Organizations | Location | People |
---|
document
PMMA mPOF Bragg gratings written in less than 10 min
Abstract
Fiber Bragg grating (FBG) writing in PMMA microstructured Polymer Optical Fibers (mPOFs) using the UV Phase Mask technique is a time consuming process requiring about 40 minutes to inscribe a grating in an undoped fiber. Here we demonstrate the FBG inscription with the writing times shorter than 10 min. By careful alligning and increasing the beam intensity in the core of the fiber, writing times as short as 6 minutes and 50 second were achieved. The FBGs were written in a 125 μm PMMA mPOF having 3-rings of holes, the reflection peaks were centred at 632.6 nm and have a reflectivity as high as 26 dB. We also demonstrate how the writing dynamics depends on the intensity of the writing beam.