People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bierlich, J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2017Fabry-Perot interferometer based on array of microspheres for temperature sensing
- 2013Microcavity Tip Temperature Sensor based on Post-Processing
- 2013Post-Processing of Fabry-Perot Microcavity Tip Sensorcitations
- 2012Nanoscopic tip sensors fabricated by gas phase etching of optical glass fibers
- 2012Towards the control of highly sensitive Fabry-Perot strain sensor based on hollow-core ring photonic crystal fibercitations
Places of action
Organizations | Location | People |
---|
document
Microcavity Tip Temperature Sensor based on Post-Processing
Abstract
A Fabry-Perot microcavity tip temperature sensor based on a special design double-cladding optical fiber is proposed. The produced fiber has pure silica core and outer cladding and a silica ring doped with phosphorous. The whole ring region is removed by chemical etching post-processing. Consequently, light will be guided in the core region. In a first step, the double-cladding optical fiber is spliced to single mode fiber. Afterwards, the tip is etched in a solution of 48% hydrofluoric acid. The inner cladding will be etched faster, and the core becomes suspended and surrounded by air. The Fabry-Perot microcavity tip sensor is subjected to temperature, and a linear sensitivity of 14.6 pm/degrees C is obtained.