People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kozacki, Tomasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
booksection
Hybrid and transflective system based on digital holographic microscope and low coherent interferometer for high gradient shape measurement
Abstract
The most suited techniques for quantitative and accurate determination of the phase distribution in a phase photonic microstructures are based on the interferometry, especially the digital holography (DH) in microscopic configuration. However there is well known limitation of the coherent full- field interferometric measurements: the phase difference between the neighboring samples cannot be larger than 2, or objects shape have to generate light that can be collected by used optical system. This limitation might be overcame by use of a well-known technique called low-coherence interferometry (LCI) which allows for absolute shape measurements with a nanometer resolution and does not have 2 limitation of coherent interferometric techniques. In this work a dual channel measurement system for characterization of a high numerical aperture objects is presented. The system combines functionalities of the LCI system based on Twyman-Green configuration and the DHM system based on Mach-Zehnder configuration. The DHM allows to measure sample in transmission while LCI setup provides reflective measurement data and, therefore, provides a more complete tool for topography characterization. The dual channel system extends capabilities of both methods.