Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wadsworth, W. J.

  • Google
  • 1
  • 8
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013NV center emission in a substrate free low index environmentcitations

Places of action

Chart of shared publication
Rollings, M.
1 / 2 shared
Gaebel, T.
1 / 1 shared
Inam, F. A.
1 / 1 shared
Grogan, M. D. W.
1 / 2 shared
Castelletto, S.
1 / 1 shared
Birks, T. A.
1 / 2 shared
Say, J. M.
1 / 1 shared
Rabeau, J. R.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Rollings, M.
  • Gaebel, T.
  • Inam, F. A.
  • Grogan, M. D. W.
  • Castelletto, S.
  • Birks, T. A.
  • Say, J. M.
  • Rabeau, J. R.
OrganizationsLocationPeople

document

NV center emission in a substrate free low index environment

  • Rollings, M.
  • Gaebel, T.
  • Inam, F. A.
  • Grogan, M. D. W.
  • Castelletto, S.
  • Birks, T. A.
  • Say, J. M.
  • Wadsworth, W. J.
  • Rabeau, J. R.
Abstract

<p>With in-built advantages (high quantum efficiency and room temperature photostability1) for deployment in quantum technologies as a bright on-demand source of single photons, the nitrogen vacancy (NV) center is the most widely studied optical defect in diamond. Despite significant success in controlling its spontaneous emission2, the fundamental understanding of its photo-physics in various environments and host material remains incomplete. Studying NV photoemission from nanodiamonds on a glass substrate, we recently pointed out a disparity between the measured and calculated decay rates (assuming near unity quantum efficiency)3. This indicates the presence of some strong nonradiative influences from factors most likely intrinsic to nanodiamond itself. To obtain a clearer picture of the NV emission, here we remove the substrate contributions to the decay rates by embedding our nanodiamonds inside silica aerogel, a substrate-free environment of effective index n ∼ 1.05. Nanodiamond doped aerogel samples were fabricated using the two-step process4. Time-resolved fluorescence measurement on ∼20 centers for both coverslip and aerogel configurations, showed an increase in the mean lifetime (∼37%) and narrowing of the distribution width (∼40%) in the aerogel environment, which we associate with the absence of a air/cover-glass interface near the radiating dipoles3. Finite difference time domain (FDTD) calculations showed the strong influence of the irregular nanodiamond geometry on the remaining distribution width. Finally a comparison between measurements and calculations provides an estimate of the quantum efficiency of the nanodiamond NV emitters as ∼0.7. This value is apparently consistent with recent reports concerning the oscillation of the NV center between negative and neutral charge states5.</p>

Topics
  • impedance spectroscopy
  • glass
  • glass
  • Nitrogen
  • vacancy