People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Julien, P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Rapid quantification of COVID-19 pneumonia burden from computed tomography with convolutional long short-term memory networks.
Abstract
<b>Purpose:</b> Quantitative lung measures derived from computed tomography (CT) have been demonstrated to improve prognostication in coronavirus disease 2019 (COVID-19) patients but are not part of clinical routine because the required manual segmentation of lung lesions is prohibitively time consuming. We aim to automatically segment ground-glass opacities and high opacities (comprising consolidation and pleural effusion). <b>Approach:</b> We propose a new fully automated deep-learning framework for fast multi-class segmentation of lung lesions in COVID-19 pneumonia from both contrast and non-contrast CT images using convolutional long short-term memory (ConvLSTM) networks. Utilizing the expert annotations, model training was performed using five-fold cross-validation to segment COVID-19 lesions. The performance of the method was evaluated on CT datasets from 197 patients with a positive reverse transcription polymerase chain reaction test result for SARS-CoV-2, 68 unseen test cases, and 695 independent controls. <b>Results:</b> Strong agreement between expert manual and automatic segmentation was obtained for lung lesions with a Dice score of 0.89 ± 0.07; excellent correlations of 0.93 and 0.98 for ground-glass opacity (GGO) and high opacity volumes, respectively, were obtained. In the external testing set of 68 patients, we observed a Dice score of 0.89 ± 0.06as well as excellent correlations of 0.99 and 0.98 for GGO and high opacity volumes, respectively. Computations for a CT scan comprising 120 slices were performed under 3 s on a computer equipped with an NVIDIA TITAN RTX GPU. Diagnostically, the automated quantification of the lung burden % discriminate COVID-19 patients from controls with an area under the receiver operating curve of 0.96 (0.95-0.98). <b>Conclusions:</b> Our method allows for the rapid fully automated quantitative measurement of the pneumonia burden from CT, which can be used to rapidly assess the severity of COVID-19 pneumonia on chest CT.