People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jones, J. D. C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2008Pulsed laser micromachining of yttria-stabilized zirconia dental ceramic for manufacturingcitations
- 2005Strain and temperature sensitivity of a single-mode polymer optical fibercitations
- 2005Delivery of nanosecond pulses through hollow core photonic crystal fibres and the associated damage limitationscitations
- 2005Single-mode mid-IR guidance in a hollow-core photonic crystal fibercitations
- 2005Developments towards controlled three-dimensional laser forming of continuous surfacescitations
- 2004Iterative 3D laser forming of continuous surfaces
- 2004Temperature dependence of the stress response of fibre Bragg gratingscitations
- 2003Dynamic distortion measurements during laser forming of Ti-6Al-4V and their comparison with a finite element modelcitations
- 2003Dynamic shape measurement system for laser materials processingcitations
- 2001Real-time, nonintrusive oxidation detection system for the welding of reactive aerospace materials
Places of action
Organizations | Location | People |
---|
article
Dynamic shape measurement system for laser materials processing
Abstract
<p>We describe a laser-based profilometry system that demonstrates high-resolution, dynamic surface height measurements in hostile conditions. The robust system measures transient distortions of continuous surfaces under the conditions of high stray light and mechanical disturbances that are typically found in laser drilling and welding. A coherent fringe pattern is projected onto the object surface using a binary phase grating interferometer. A charge-coupled device (CCD) camera fitted with a narrow-bandpass filter, centered on the optical wavelength of the projected fringes, records images of the illuminated workpiece while rejecting unwanted light from the high-power processing laser. The fringe pattern in each image is analyzed by the Fourier transform method, enabling dynamic shape measurement at the camera frame rate. The fringe order is identified uniquely by the dynamic projection of a laser spot aligned with a single fringe. An in-situ calibration produces height maps that are corrected for perspective and lens distortion errors. The unique measurement capability of the system has enabled the first dynamic shape measurements to be made during laser forming. Results are presented for the laser forming of 80x80 mm titanium alloy coupons, over which area a height accuracy of ±12 µm was achieved.</p>