People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Henss, Anja
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis
- 2024Lipid-related ion suppression on the herbicide atrazine in earthworm samples in ToF-SIMS and matrix-assisted laser desorption ionization mass spectrometry imaging and the role of gas-phase basicitycitations
- 2023SEI growth on Lithium metal anodes in solid-state batteries quantified with coulometric titration time analysiscitations
- 2023Investigation of the Stability of the Poly(ethylene oxide) | LiNi$_{1‐x‐y}$Co$_x$Mn$_y$O$_2$ Interface in Solid‐State Batteries
- 2023Evaluation and Improvement of the Stability of Poly(ethylene oxide)-based Solid-state Batteries with High-Voltage Cathodes
- 2023Identification of Lithium Compounds on Surfaces of Lithium Metal Anode with Machine-Learning-Assisted Analysis of ToF-SIMS Spectracitations
- 2022In Situ Investigation of Lithium Metal–Solid Electrolyte Anode Interfaces with ToF‐SIMScitations
- 2022Quantification of calcium content in bone by using ToF-SIMS-a first approach
- 2022Advanced Analytical Characterization of Interface Degradation in Ni-Rich NCM Cathode Co-Sintered with LATP Solid Electrolytecitations
- 2021Reaction of Li1.3Al0.3Ti1.7(PO4)3 and LiNi0.6Co0.2Mn0.2O2 in co-sintered composite cathodes for solid-state batteriescitations
- 2013Quantification of calcium content in bone by using ToF-SIMS–a first approach
Places of action
Organizations | Location | People |
---|
article
Lipid-related ion suppression on the herbicide atrazine in earthworm samples in ToF-SIMS and matrix-assisted laser desorption ionization mass spectrometry imaging and the role of gas-phase basicity
Abstract
<jats:p>In mass spectrometry imaging (MSI), ion suppression can lead to a misinterpretation of results. Particularly phospholipids, most of which exhibit high gas-phase basicity (GB), are known to suppress the detection of metabolites and drugs. This study was initiated by the observation that the signal of an herbicide, i.e., atrazine, was suppressed in MSI investigations of earthworm tissue sections. Herbicide accumulation in earthworms was investigated by time-of-flight secondary ion mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Additionally, earthworm tissue sections without accumulation of atrazine but with a homogeneous spray deposition of the herbicide were analyzed to highlight region-specific ion suppression. Furthermore, the relationship of signal intensity and GB in binary mixtures of lipids, amino acids, and atrazine was investigated in both MSI techniques. The GB of atrazine was determined experimentally through a linear plot of the obtained intensity ratios of the binary amino acid mixtures, as well as theoretically. The GBs values for atrazine of 896 and 906 kJ/mol in ToF-SIMS and 933 and 987 kJ/mol in MALDI-MSI were determined experimentally and that of 913 kJ/mol by quantum mechanical calculations. Compared with the GB of a major lipid component, phosphatidylcholine (GBPC = 1044.7 kJ/mol), atrazine’s experimentally and computationally determined GBs in this work are significantly lower, making it prone to ion suppression in biological samples containing polar lipids.</jats:p>