People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Des Ligneris, Elise
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Catalytic atomic layer deposition of amorphous alumina–silica thin films on carbon microfiberscitations
- 2023Amorphous Alumina Thin Films Deposited on Carbon Microfibers As Interface Layer for Thermal Oxidation Barrierscitations
- 2019Catalytic electrospun nano-composite membranes for virus capture and remediationcitations
- 2019Catalytic electrospun nano-composite membranes for virus capture and remediationcitations
- 2019Mixed matrix Poly(vinyl alcohol)-Copper nanofibrous anti-microbial air-microfilterscitations
Places of action
Organizations | Location | People |
---|
article
Catalytic atomic layer deposition of amorphous alumina–silica thin films on carbon microfibers
Abstract
<jats:p>Deposition of silica-based thin films on carbon microfibers has long been considered a challenge. Indeed, the oxidation-sensitive nature of carbon microfibers over 550 K and their submicron-textured surface does not bode well with the required conformity of deposition best obtained by atomic layer deposition (ALD) and the thermal oxidative conditions associated with common protocols of silica ALD. Nonetheless, the use of a catalytic ALD process allowed for the deposition of amorphous alumina–silica bilayers from 445 K using trimethylaluminium and tris(tert-pentoxy)silanol (TPS). In this study, first undertaken on flat silicon wafers to make use of optical spectroscopies, the interplay between kinetics leading to a dense silica film growth was investigated in relation to the applied operation parameters. A threshold between the film catalyzed growth and the complete outgassing of pentoxy-derived compounds from TPS was found, resulting in a deposition of equivalent growth per cycle of 1.1 nm c−1, at a common ALD rate of 0.3 nm min−1, with a flat thickness gradient. The deposition on carbon microfiber fabrics was found conformal, albeit with a thickness growth capped below 20 nm, imparted by the microfiber surface texture. STEM-EDX showed a sharp interface of the bilayer with limited carbon diffusion. The conformal and dense deposition of alumina–silica thin films on carbon microfibers holds great potential for further use as refractory oxygen barrier layers.</jats:p>