People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pfeiffer, S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Amorphous carbon thin filmscitations
- 2022Reverse coating technique for the production of Nb thin films on copper for superconducting radio-frequency applicationscitations
- 2019The CERN FCC Conductor Development Program: A Worldwide Effort for the Future Generation of High-Field Magnetscitations
- 2019Pre-processing of hematite-doped alumina granules for selective laser meltingcitations
- 2018On the identification of an effective cross section for a cruciform specimencitations
- 2000The copolymer route to new luminescent materials for LEDs
Places of action
Organizations | Location | People |
---|
article
Amorphous carbon thin films
Abstract
Amorphous carbon (a-C) films, having low secondary electron yield (SEY), are used at CERN to suppress electron multipacting in the beam pipes of particle accelerators. It was already demonstrated that hydrogen impurities increase the SEY of a-C films. In this work, a systematic characterization of a set of a-C coatings, deliberately contaminated by deuterium during the magnetron sputtering deposition, by scanning electron microscopy, ion beam analysis, secondary ion mass spectrometry, and optical absorption spectroscopy was performed to establish a correlation between the hydrogen content and the secondary electron emission properties. In parallel, the mechanisms of contamination were also investigated. Adding deuterium allows resolving the contributions of intentional and natural contamination. The results enabled us to quantify the relative deuterium/hydrogen (D/H) amounts and relate them with the maximum SEY (SEYmax). The first step of incorporation appears to be formation of D/H atoms in the discharge. An increase in both the flux of deposited carbon atoms and the discharge current with a D2 fraction in the gas discharge can be explained by target poisoning with deuterium species followed by etching of CxDy clusters, mainly by physical sputtering. For overall relative D/H amounts between 11% and 47% in the discharge gas, the SEYmax increases almost linearly from 0.99 to 1.38. An abrupt growth of SEYmax from 1.38 to 2.12 takes place in the narrow range of D/H relative content of 47%-54%, for which the nature of the deposited films changes to a polymer-like layer.