People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Letofsky-Papst, Ilse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Microstructure and Mechanical Properties of Ti-6Al-4V In Situ Alloyed with 3 wt% Cr by Laser Powder Bed Fusion
- 2024Advancements in metal additive manufacturingcitations
- 2023Oxidation behavior of a cathodic arc evaporated Cr$_{0.69}$Ta$_{0.20}$B$_{0.11}$N coating
- 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
- 2023Microstructure of a modulated Ti-6Al-4V – Cu alloy fabricated via in situ alloying in laser powder bed fusioncitations
- 2023Oxidation behavior of a cathodic arc evaporated Cr<sub>0.69</sub>Ta<sub>0.20</sub>B<sub>0.11</sub>N coating
- 2022Unique microstructure evolution of a novel Ti-modified Al-Cu alloy processed using laser powder bed fusioncitations
- 2022Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical propertiescitations
- 2021Laser powder bed fusion of nano-CaB6 decorated 2024 aluminum alloycitations
- 2021A novel nZVI–bentonite nanocomposite to remove trichloroethene (TCE) from solutioncitations
- 2020The effect of oxygen and carbon on molybdenum in Laser Powder Bed Fusion
- 2020Microstructural evolution of metallurgical coke: Evidence from Raman spectroscopycitations
- 2019Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cellcitations
- 2016Effect of Alkaline Elements on Coke Structure under Blast Furnace Process Conditions
- 2014Order vs. disorder — a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminatecitations
- 2012Application of elemental microanalysis to elucidate the role of spherites in the digestive gland of the helicid snail Chilostoma lefeburiana
- 2008δ-phase characterization of superalloy Allvac 718 Plus™
Places of action
Organizations | Location | People |
---|
article
Oxidation behavior of a cathodic arc evaporated Cr<sub>0.69</sub>Ta<sub>0.20</sub>B<sub>0.11</sub>N coating
Abstract
<jats:p> CrTaBN hard coatings deposited by cathodic arc evaporation are a promising new material class for use in demanding applications, due to their high hardness and good thermal stability in protective atmosphere. Up to now however, studies on the detailed oxidation mechanism of quaternary CrTaBN coatings are lacking in the literature. Thus, within this work, the oxidation behavior of a Cr<jats:sub>0.69</jats:sub>Ta<jats:sub>0.20</jats:sub>B<jats:sub>0.11</jats:sub>N coating grown by cathodic arc evaporation was studied in a combinatorial approach of advanced characterization techniques. In situ high-energy x-ray diffraction at a synchrotron radiation facility showed that up to ∼1100 °C, only the face-centered cubic (fcc) Cr<jats:sub>x</jats:sub>Ta<jats:sub>y</jats:sub>B<jats:sub>1−x−y</jats:sub>N solid solution of powdered CrTaBN contributes to the crystalline phase composition. As the temperature is further increased, tetragonal CrTaO<jats:sub>4</jats:sub> and rhombohedral Cr<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> form. In situ high-temperature Raman spectroscopy evidenced that B<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> contributes to the phase composition of the material in the temperature regime from ∼600 to 1000 °C. Applying high-resolution transmission electron microscopy allowed to identify the presence of four discrete zones in a partly oxidized CrTaBN coating on sapphire: intact fcc-CrTaBN at the interface to the substrate, followed by a Cr-deficient and Cr-enriched layer, respectively, and a porous layer with small grains at the surface. </jats:p>