People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shkondin, Evgeniy
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Titanium Nitride Nanotrench Metasurfaces for Mid-infrared Chemical Sensingcitations
- 2023Optical properties of plasmonic titanium nitride thin films from ultraviolet to mid-infrared wavelengths deposited by pulsed-DC sputtering, thermal and plasma-enhanced atomic layer depositioncitations
- 2022Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor depositioncitations
- 2022Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor depositioncitations
- 2021Thickness-dependent optical properties of aluminum nitride films for mid-infrared wavelengthscitations
- 2020Microspherical nanoscopy: is it a reliable technique?citations
- 2020Microspherical nanoscopy: is it a reliable technique?citations
- 2020Fabrication of hollow coaxial Al 2 O 3 /ZnAl 2 O 4 high aspect ratio freestanding nanotubes based on the Kirkendall effectcitations
- 2020Fabrication of hollow coaxial Al2O3/ZnAl2O4 high aspect ratio freestanding nanotubes based on the Kirkendall effectcitations
- 2019Doped silicon plasmonic nanotrench structures for mid-infrared molecular sensing
- 2019Optical properties of titanium nitride films under low temperature
- 2019Optical properties of titanium nitride films under low temperature
- 2019Cryogenic characterization of titanium nitride thin filmscitations
- 2019Doped silicon plasmonic nanotrench structures for mid-infrared molecular sensing
- 2019Plasmonic Characterization of Titanium Nitride Films under Low Temperatures
- 2019Plasmonic Characterization of Titanium Nitride Films under Low Temperatures
- 2019Lamellas metamaterials: Properties and potential applications
- 2019Lamellas metamaterials: Properties and potential applications
- 2018Experimental observation of Dyakonov plasmons in the mid-infraredcitations
- 2017Advanced fabrication of hyperbolic metamaterials
- 2017Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials.citations
- 2017Highly ordered Al-doped ZnO nano-pillar and tube structures as hyperbolic metamaterials for mid-infrared plasmonics
- 2016Fabrication of Hyperbolic Metamaterials using Atomic Layer Deposition
- 2016Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer depositioncitations
- 2016Conductive Oxides Trench Structures as Hyperbolic Metamaterials in Mid-infrared Range
- 2016Fabrication of high aspect ratio TiO 2 and Al 2 O 3 nanogratings by atomic layer depositioncitations
- 2016Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements
- 2015Ultra-thin Metal and Dielectric Layers for Nanophotonic Applicationscitations
- 2014Depositing Materials on the Micro- and Nanoscale
Places of action
Organizations | Location | People |
---|
article
Thickness-dependent optical properties of aluminum nitride films for mid-infrared wavelengths
Abstract
We present a comparative study of optical properties of aluminum nitride (AlN) thin films with different thicknesses. The films with thicknesses ranging from 66 to 303 nm were deposited by reactive sputtering and plasma enhanced atomic layer deposition (PEALD). Permittivity was extracted from an ellipsometry and Fourier-transform infrared (FTIR) spectroscopy reflection measurements. Our particular focus is on the influence of the deposition method and the film thickness on the AlN dielectric function. Here, we show that both PEALD-deposited and sputtered AlN films exhibit a monotonic dependence of negative permittivity on their thickness for vast mid-IR wavelengths including the reststrahlen band around 11.5–15 μm (∼ 870 – 667cm− 1). By structural analysis, it was shown that PEALD-deposited layers contain a lower amount of oxygen and have smoother surfaces than deposited by the sputtering technique. On the other hand, sputtered films have higher densities and crystallinity, which results in the higher background permittivity (ε∞). In FTIR spectra of the PEALD-deposited layers, two specific features are observed, which can be explained by a higher concentration of nitrogen due to nitrogen-rich plasma in the ALD process. Such peculiarities of the optical properties of AlN films should be taken into account in potential applications of this material for metamaterials and nanostructured systems.