Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bespalova, Kristina

  • Google
  • 8
  • 27
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Metalorganic Chemical Vapor Deposition of AlN on High Degree Roughness Vertical Surfaces for MEMS Fabrication4citations
  • 2023In-Plane AlN-based Actuator: Toward a New Generation of Piezoelectric MEMS6citations
  • 2022Unlocking the Potential of Piezoelectric Films Grown on Vertical Surfaces for Inertial MEMS4citations
  • 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabrication16citations
  • 2021Characterization of AlScN-based multilayer systems for piezoelectric micromachined ultrasound transducer (pMUT) fabrication16citations
  • 2021Characterization of AlScN-Based Multilayer Systems for Piezoelectric Micromachined Ultrasound Transducer (pMUT) Fabrication16citations
  • 2021Atomic layer deposition of AlN using atomic layer annealing - Towards high-quality AlN on vertical sidewalls21citations
  • 2021Effect of crystal structure on the Young's modulus of GaP nanowires4citations

Places of action

Chart of shared publication
Paulasto-Kröckel, Mervi
7 / 31 shared
Ross, Glenn
6 / 35 shared
Suihkonen, Sami
1 / 25 shared
Nieminen, Tarmo
1 / 2 shared
Gabrelian, Artem
1 / 2 shared
Gabrelian, Gabrelian
1 / 1 shared
Karuthedath, Cyril Baby
2 / 8 shared
Mertin, Stefan
3 / 6 shared
Österlund, Elmeri
4 / 8 shared
Pensala, Tuomas
3 / 17 shared
Karuthedath, Cyril
1 / 3 shared
Thanniyil Sebastian, Abhilash
1 / 5 shared
Sebastian, Abhilash Thanniyil
1 / 2 shared
Miikkulainen, Ville
1 / 28 shared
Seppänen, Heli
1 / 6 shared
Cirlin, George E.
1 / 1 shared
Lipsanen, Harri
1 / 65 shared
Alekseev, Prokhor A.
1 / 2 shared
Khayrudinov, Vladislav
1 / 5 shared
Lahderanta, Erkki
1 / 2 shared
Haggren, Tuomas
1 / 11 shared
Dunaevskiy, Mikhail S.
1 / 1 shared
Geydt, Pavel
1 / 3 shared
Kirilenko, Demid A.
1 / 3 shared
Borodin, Bogdan R.
1 / 2 shared
Reznik, Rodion R.
1 / 1 shared
Nashchekin, Alexey
1 / 2 shared
Chart of publication period
2024
2023
2022
2021

Co-Authors (by relevance)

  • Paulasto-Kröckel, Mervi
  • Ross, Glenn
  • Suihkonen, Sami
  • Nieminen, Tarmo
  • Gabrelian, Artem
  • Gabrelian, Gabrelian
  • Karuthedath, Cyril Baby
  • Mertin, Stefan
  • Österlund, Elmeri
  • Pensala, Tuomas
  • Karuthedath, Cyril
  • Thanniyil Sebastian, Abhilash
  • Sebastian, Abhilash Thanniyil
  • Miikkulainen, Ville
  • Seppänen, Heli
  • Cirlin, George E.
  • Lipsanen, Harri
  • Alekseev, Prokhor A.
  • Khayrudinov, Vladislav
  • Lahderanta, Erkki
  • Haggren, Tuomas
  • Dunaevskiy, Mikhail S.
  • Geydt, Pavel
  • Kirilenko, Demid A.
  • Borodin, Bogdan R.
  • Reznik, Rodion R.
  • Nashchekin, Alexey
OrganizationsLocationPeople

article

Atomic layer deposition of AlN using atomic layer annealing - Towards high-quality AlN on vertical sidewalls

  • Bespalova, Kristina
  • Paulasto-Kröckel, Mervi
  • Miikkulainen, Ville
  • Seppänen, Heli
  • Österlund, Elmeri
Abstract

Publisher Copyright: © 2021 Author(s). Copyright: Copyright 2021 Elsevier B.V., All rights reserved. ; Atomic layer deposition (ALD) of aluminum nitride (AlN) using in situ atomic layer annealing (ALA) is studied for microelectromechanical systems (MEMS). Effective piezoelectric in-plane actuation and sensing requires deposition of high crystal quality and (0002) oriented AlN on vertical sidewalls of MEMS structures. Previous studies have shown that the crystal quality of ALD AlN can be significantly improved using ALA but have not studied the conformal coverage or crystal quality on metal electrodes, which are required for piezoelectric MEMS devices. In this study, AlN thin films are deposited on Si, Al, Pt, and on vertical sidewalls etched into Si. The AlN microstructure and properties are studied using x-ray diffraction methods, transmission electron microscopy, and Fourier transform infrared spectroscopy. The conformal coverage is evaluated by measuring the film thickness on the vertical sidewalls. The effects of postdeposition annealing are studied as well. This study aims to enable effective piezoelectric actuation and sensing for MEMS sensors. The conformal coverage of the ALA ALD process is excellent and AlN has the best crystal quality and degree of orientation when deposited on Al. The as-deposited films contain oxygen impurities, which might be detrimental to the piezoelectric properties of AlN. Annealing at high temperatures reduced the number of impurities but did not improve the crystal quality. ; Peer reviewed

Topics
  • impedance spectroscopy
  • microstructure
  • x-ray diffraction
  • thin film
  • Oxygen
  • aluminium
  • nitride
  • transmission electron microscopy
  • annealing
  • Fourier transform infrared spectroscopy
  • atomic layer deposition
  • diffraction method