People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pigram, Paul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023New insight into degradation mechanisms of conductive and thermally resistant polyaniline filmscitations
- 2023Comparison of Tiling Artifact Removal Methods in Secondary Ion Mass Spectrometry Imagescitations
- 2023Two-Dimensional and Three-Dimensional Time-of-Flight Secondary Ion Mass Spectrometry Image Feature Extraction Using a Spatially Aware Convolutional Autoencodercitations
- 2023Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF‐SIMS and Self‐Organizing mapscitations
- 2022Applications of multivariate analysis and unsupervised machine learning to ToF-SIMS images of organic, bioorganic, and biological systems
- 2020ToF-SIMS and machine learning for single-pixel molecular discrimination of an acrylate polymer microarray
- 2020Analyzing 3D Hyperspectral ToF-SIMS Depth Profile Data Using Self-Organizing Map-Relational Perspective Mappingcitations
- 2018Distinguishing chemically similar polyamide materials with ToF-SIMS using self-organizing maps and a universal data matrixcitations
- 2017Determining the limit of detection of surface bound antibodycitations
- 2016Chromium functionalized diglyme plasma polymer coating enhances enzyme-linked immunosorbent assay performancecitations
Places of action
Organizations | Location | People |
---|
article
Analyzing 3D Hyperspectral ToF-SIMS Depth Profile Data Using Self-Organizing Map-Relational Perspective Mapping
Abstract
The advantages of applying multivariate analysis to mass spectrometry imaging (MSI) data have been thoroughly demonstrated in recent decades. The identification and visualization of complex relationships between pixels in a hyperspectral data set can provide unique insights into the underlying surface chemistry. It is now recognized that most MSI data contain nonlinear relationships, which has led to increased application of machine learning approaches. Previously, we exemplified the use of the self-organizing map (SOM), a type of artificial neural network, for analyzing time-of-flight secondary ion mass spectrometry (TOF-SIMS) hyperspectral images. Recently, we developed a novel methodology, SOM-relational perspective mapping (RPM), which incorporates the algorithm RPM to improve visualization of the SOM for 2D TOF-SIMS images. Here, we use SOM-RPM to characterize and interpret 3D TOF-SIMS depth profile data, voxel-by-voxel. An organic Irganox™ multilayer standard sample was depth profiled using TOF-SIMS, and SOM-RPM was used to create 3D similarity maps of the depth-profiled sample, in which the mass spectral similarity of individual voxels is modeled with color similarity. We used this similarity map to segment the data into spatial features, demonstrating that the unsupervised method meaningfully differentiated between Irganox-3114 and Irganox-1010 nanometer-thin multilayer films. The method also identified unique clusters at the surface associated with environmental exposure and sample degradation. Key fragment ions characteristic of each cluster were identified, tying clusters to their underlying chemistries. SOM-RPM has the demonstrable ability to reduce vast data sets to simple 3D visualizations that can be used for clustering data and visualizing the complex relationships within.