Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Paul, Ankan

  • Google
  • 2
  • 7
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022Metal‐Thiolate Framework for Electrochemical and Photoelectrochemical Hydrogen Generation7citations
  • 2020Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) as semiconductor sensitizer in extremely thin absorber solar cell8citations

Places of action

Chart of shared publication
Chongdar, Sayantan
1 / 2 shared
Mukherjee, Manjistha
1 / 1 shared
Chatterjee, Sauvik
1 / 3 shared
Halder, Debabrata
2 / 2 shared
Shaymal, Sanjib
1 / 1 shared
Mahuli, Neha
1 / 1 shared
Sarkar, Shaibal
1 / 2 shared
Chart of publication period
2022
2020

Co-Authors (by relevance)

  • Chongdar, Sayantan
  • Mukherjee, Manjistha
  • Chatterjee, Sauvik
  • Halder, Debabrata
  • Shaymal, Sanjib
  • Mahuli, Neha
  • Sarkar, Shaibal
OrganizationsLocationPeople

article

Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) as semiconductor sensitizer in extremely thin absorber solar cell

  • Paul, Ankan
  • Halder, Debabrata
  • Mahuli, Neha
  • Sarkar, Shaibal
Abstract

<jats:p>Atomic layer deposition of amorphous antimony sulfide (a-Sb2S3) is demonstrated with an alternating exposure of tris(dimethylamino)antimony (TDMASb) and hydrogen sulfide (H2S) at 150 °C in a custom-built viscous flow reactor. Growth mechanism and deposition chemistry are investigated by in situ quartz crystal microbalance and in situ Fourier Transform Infrared spectroscopy. Reaction hypothesis facilitating the binary reaction is established by quantum mechanical density functional theory calculations that essentially support the experimental findings. The developed material is used as a photon harvester in solar cells under extremely thin absorber configuration, with TiO2 and Spiro-OMeTAD as electron and hole transporting layers, respectively. Investigation of charge injection properties with surface photovoltage spectroscopy reveals low but non-negligible density of interfacial (sensitizer/TiO2) electronic defects. The conventional viscous flow reactor configuration is modified to showerhead-type reactor configuration to achieve better uniformity and conformality of a-Sb2S3 on highly porous TiO2 scaffolds. a-Sb2S3 device performance is optimized to achieve the highest power conversion efficiencies of 0.5% while annealed crystalline c-Sb2S3 device reaches power conversion efficiencies of 1.9% under 1 sun illumination.</jats:p>

Topics
  • porous
  • density
  • impedance spectroscopy
  • surface
  • amorphous
  • theory
  • semiconductor
  • Hydrogen
  • defect
  • density functional theory
  • Fourier transform infrared spectroscopy
  • atomic layer deposition
  • Antimony