People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mkhoyan, K. Andre
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Optical Properties of Electrochemically Gated La 1− xSr xCoO 3−δ as a Topotactic Phase-Change Materialcitations
- 2023Anomalous strain relaxation and its impact on the valence-driven spin-state/metal-insulator transition in epitaxial (Pr1−yYy)1−xCaxCoO3−δcitations
- 2023Spin Hall conductivity in Bi$_{1-x}$Sb$_x$ as an experimental test of bulk-boundary correspondence
- 2021Spin and Charge Interconversion in Dirac-Semimetal Thin Filmscitations
- 2020Layer Dependence of Dielectric Response and Water-Enhanced Ambient Degradation of Highly Anisotropic Black Ascitations
- 2020Ambipolar transport in van der Waals black arsenic field effect transistorscitations
- 2020Plasmonic nanocomposites of zinc oxide and titanium nitridecitations
- 2020Self-Assembled Periodic Nanostructures Using Martensitic Phase Transformationscitations
- 2020Thermal transport in ZnO nanocrystal networks synthesized by nonthermal plasmacitations
- 2018Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1–x) filmscitations
- 2015Giant Spin Pumping and Inverse Spin Hall Effect in the Presence of Surface and Bulk Spin-Orbit Coupling of Topological Insulator Bi2Se3citations
- 2015Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinementcitations
- 2015Hybrid molecular beam epitaxy for the growth of stoichiometric BaSnO3citations
- 2012Sputter deposition of semicrystalline tin dioxide filmscitations
- 2012Improving the damp-heat stability of copper indium gallium diselenide solar cells with a semicrystalline tin dioxide overlayercitations
- 2010Orientation and morphological evolution of catalyst nanoparticles during carbon nanotube growthcitations
- 2010Effect of hydrogen on catalyst nanoparticles in carbon nanotube growthcitations
Places of action
Organizations | Location | People |
---|
article
Plasmonic nanocomposites of zinc oxide and titanium nitride
Abstract
<p>The authors produce plasmonic ZnO-TiN nanocomposite films by depositing plasma-synthesized ZnO nanocrystals onto a substrate and then by infilling the nanocrystal network's pores with TiN via remote plasma-enhanced atomic layer deposition (PEALD). This ZnO-TiN nanocomposite exhibits a plasmonic resonance that is blueshifted compared to planar titanium nitride thin films. The authors study the effects of PEALD conditions and the ZnO film thickness on the plasmonic response of these nanocomposites and exploit the optimized film in a device that generates photocurrent at zero bias.</p>