People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lee, Chris J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Atomic H diffusion and C etching in multilayer graphene monitored using a y based optical sensor
Abstract
<p>In this work, the authors expose transferred multilayer graphene on a yttrium based hydrogen sensor. Using spectroscopic ellipsometry, they show that graphene, as well as amorphous carbon reference films, reduce diffusion of hydrogen to the underlying Y layer. Graphene and C are both etched due to exposure to atomic H, eventually leading to hydrogenation of the Y to YH<sub>2</sub> and YH<sub>3</sub>. Multilayer graphene, even with defects originating from manufacturing and transfer, showed a higher resistance against atomic H etching compared to amorphous carbon films of a similar thickness.</p>