Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rossall, Andrew K.

  • Google
  • 7
  • 33
  • 40

University of Huddersfield

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Understanding the passivation layer formed by tolyltriazole on copper, bronze, and brass surfacescitations
  • 2024Understanding the passivation layer formed by tolyltriazole on copper, bronze, and brass surfacescitations
  • 2019Use of TRIDYN and medium energy ion scattering to calibrate an industrial arsenic plasma doping process3citations
  • 2019Analysis of plasma enhanced pulsed laser deposition of transition metal oxide thin films using medium energy ion scattering7citations
  • 2017Combining dynamic modelling codes with medium energy ion scattering measurements to characterise plasma doping7citations
  • 2014Modelling of laser ablation and reactive oxygen plasmas for pulsed laser deposition of zinc oxide23citations
  • 2010Laser interaction with low-density carbon foamcitations

Places of action

Chart of shared publication
Rossin, Alexander J.
1 / 1 shared
Miller, David N.
1 / 14 shared
Baddeley, Christopher J.
1 / 4 shared
Francis, Stephen M.
1 / 2 shared
Grillo, Federico
2 / 19 shared
Hunt, Gregory J.
2 / 3 shared
Baddeley, Christopher John
1 / 8 shared
Van Den Berg, Jakob A.
1 / 1 shared
Francis, Stephen Malcolm
1 / 5 shared
Miller, David Noel
1 / 8 shared
Rossin, Alexander John
1 / 1 shared
England, Jonathan
2 / 4 shared
Van Den Berg, Jakob Albert
3 / 3 shared
Meehan, David
1 / 1 shared
Rajendiran, Sudha
1 / 2 shared
Wagenaars, Erik
1 / 4 shared
Min, Wj
1 / 1 shared
Möller, W.
1 / 3 shared
Kim, J.
1 / 44 shared
Wagenaars, E.
1 / 2 shared
Rajendiran, S.
1 / 2 shared
Gibson, Elizabeth A.
1 / 4 shared
Singh, Rashmi
1 / 2 shared
Dhareshwar, L. J.
1 / 1 shared
Gupta, N. K.
1 / 3 shared
Murali, C. G.
1 / 1 shared
Tripathi, S.
1 / 5 shared
Munda, D. S.
1 / 1 shared
Kohli, D. K.
1 / 1 shared
Mishra, G.
1 / 1 shared
Tallents, Gregory John
1 / 3 shared
Khardekar, R. K.
1 / 1 shared
Chaurasia, S.
1 / 1 shared
Chart of publication period
2024
2019
2017
2014
2010

Co-Authors (by relevance)

  • Rossin, Alexander J.
  • Miller, David N.
  • Baddeley, Christopher J.
  • Francis, Stephen M.
  • Grillo, Federico
  • Hunt, Gregory J.
  • Baddeley, Christopher John
  • Van Den Berg, Jakob A.
  • Francis, Stephen Malcolm
  • Miller, David Noel
  • Rossin, Alexander John
  • England, Jonathan
  • Van Den Berg, Jakob Albert
  • Meehan, David
  • Rajendiran, Sudha
  • Wagenaars, Erik
  • Min, Wj
  • Möller, W.
  • Kim, J.
  • Wagenaars, E.
  • Rajendiran, S.
  • Gibson, Elizabeth A.
  • Singh, Rashmi
  • Dhareshwar, L. J.
  • Gupta, N. K.
  • Murali, C. G.
  • Tripathi, S.
  • Munda, D. S.
  • Kohli, D. K.
  • Mishra, G.
  • Tallents, Gregory John
  • Khardekar, R. K.
  • Chaurasia, S.
OrganizationsLocationPeople

article

Use of TRIDYN and medium energy ion scattering to calibrate an industrial arsenic plasma doping process

  • England, Jonathan
  • Rossall, Andrew K.
  • Van Den Berg, Jakob Albert
Abstract

Plasma doping ion implantation (PLAD) is becoming increasingly important for enabling the manufacture of advanced semiconductor devices. In this study, a VIISTA PLAD implanter was used to implant planar 300 mm Si wafers with As/7 keV from an arsine containing plasma with a total ion fluence of 1 × 1016 ions/cm2 . The wafers then underwent a wet chemical clean and anneal<br/>to mimic a full industrial process flow. The effects of each process step were measured using crosssectional TEM images, TEM/energy dispersive spectroscopy measurements, and medium energy ion scattering (MEIS). The PLAD implantation process was modeled using dynamic trim (TRIDYN), a dynamic, binary collision approximation model that accounted for the interactions between wafers and the ions and neutrals produced by the PLAD implanter. MEIS spectra were<br/>analyzed to extract elemental concentration depth profiles using POWERMEIS guided by the outputs of the TRIDYN model. The input fluxes of the TRIDYN model were calibrated such that the predicted TRIDYN and MEIS profiles were self-consistent. Combining the different analysis techniques and considering elemental concentrations alongside a TRIDYN model enabled magnitudes of ion and neutral fluxes of Si, As, and H to be proposed, and the relative importance of direct implantation and ion beam mixing during the PLAD implant to be revealed. This, in turn, led to proposals for the sources of the ion and neutral species, the importance of Si neutrals originating from the plasma chamber over those originating from the Si bulk in the “deposited” layer being of particular interest. Following the evolution of the as-implanted profiles through the wet clean and anneal steps gave insights into how the PLAD implant affected the results of the full process flow.

Topics
  • impedance spectroscopy
  • semiconductor
  • transmission electron microscopy
  • Arsenic
  • ion scattering