Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kilstrup, Mogens

  • Google
  • 1
  • 3
  • 4

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Influence of chlorides and phosphates on the antiadhesive, antibacterial, and electrochemical properties of an electroplated copper-silver alloy4citations

Places of action

Chart of shared publication
Møller, Per
1 / 47 shared
Gram, Lone
1 / 6 shared
Ciacotich, Nicole
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Møller, Per
  • Gram, Lone
  • Ciacotich, Nicole
OrganizationsLocationPeople

article

Influence of chlorides and phosphates on the antiadhesive, antibacterial, and electrochemical properties of an electroplated copper-silver alloy

  • Kilstrup, Mogens
  • Møller, Per
  • Gram, Lone
  • Ciacotich, Nicole
Abstract

Antimicrobial surfaces such as copper alloys can reduce the spread of pathogenic microorganisms, e.g., in healthcare settings; however, the surface chemistry and thus the antibacterial activity are influenced by environmental parameters such as cleaning and disinfection procedures. Therefore, the purpose of the present study was to assess how copper-complexing compounds (chlorides and phosphates), common to the clinical environment, can affect the surface chemistry and the antiadhesive and antibacterial properties of a newly developed antibacterial copper-silver alloy and the single alloying metals. The authors demonstrated that the antiadhesion efficacy against S. aureus 8325 was the highest when the copper-silver alloy and copper surfaces (four- and two-log bacterial reduction compared to stainless steel controls, respectively) were exposed to chloride-containing suspensions. This was explained by the electrochemical activity of copper that dissolved as Cu+, highly toxic to the bacterial cells, in the presence of Cl- and eventually formed a chlorine- and oxygen-rich layer with the incorporation of phosphorus, if also phosphates were present. If chlorides were omitted from the wet environment, there was no difference (P > 0.05) in bacterial counts on copper-silver alloy, copper, silver, and AISI 316 stainless steel control surfaces, due to the fact that no oxidizing conditions were established and therefore there was no dissolution of copper ions from copper-silver alloy and copper surfaces. However, under dry conditions, copper-silver alloy and pure copper surfaces were antibacterial also in the absence of chlorides, suggesting a marked difference between dry and wet conditions in terms of the interactions between surfaces and bacteria. The authors conclude that an attentive design of control policies integrating disinfection interventions and antimicrobial surfaces, such as the copper-silver alloy coating, can be a beneficial solution in fighting the spread of antibiotic resistant bacterial strains and potentially reducing the number of disease outbreaks.

Topics
  • surface
  • compound
  • stainless steel
  • silver
  • Oxygen
  • copper
  • Phosphorus
  • silver alloy
  • copper alloy