People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hatanpää, Timo Tapio
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Atomic Layer Deposition of Molybdenum Carbide Thin Filmscitations
- 20243D-printed sensor electric circuits using atomic layer depositioncitations
- 2023Conversion of ALD CuO Thin Films into Transparent Conductive p-Type CuI Thin Filmscitations
- 2021Highly conductive and stable Co9S8 thin films by atomic layer depositioncitations
- 2019Atomic layer deposition of tin oxide thin films from bis[bis(trimethylsilyl)amino]tin(II) with ozone and watercitations
- 2019Crystalline tungsten sulfide thin films by atomic layer deposition and mild annealingcitations
- 2019Atomic Layer Deposition of Nickel Nitride Thin Films using NiCl2(TMPDA) and Tert‐Butylhydrazine as Precursorscitations
- 2019Nickel Germanide Thin Films by Atomic Layer Depositioncitations
- 2019Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)(2)(THF) and H2Ocitations
- 2019Atomic Layer Deposition of Intermetallic Co3Sn2 and Ni3Sn2 Thin Filmscitations
- 2019Atomic Layer Deposition of PbI₂ Thin Filmscitations
- 2018Diamine Adduct of Cobalt(II) Chloride as a Precursor for Atomic Layer Deposition of Stoichiometric Cobalt(II) Oxide and Reduction Thereof to Cobalt Metal Thin Filmscitations
- 2017Thermal Atomic Layer Deposition of Continuous and Highly Conducting Gold Thin Filmscitations
- 2017Atomic layer deposition of tin oxide thin films from bis[bis(trimethylsilyl)amino]tin(II) with ozone and watercitations
- 2017Atomic Layer Deposition of Crystalline MoS2 Thin Filmscitations
- 2017Studies on Thermal Atomic Layer Deposition of Silver Thin Filmscitations
- 2016Potential gold(I) precursors evaluated for atomic layer depositioncitations
- 2016Atomic Layer Deposition of Metal Phosphates and Lithium Silicates
- 2016Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layerscitations
- 2014Metal oxide films
- 2012Study of amorphous lithium silicate thin films grown by atomic layer depositioncitations
- 2012Lithium Phosphate Thin Films Grown by Atomic Layer Depositioncitations
- 2011Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperaturescitations
- 2011Atomic Layer Deposition of GeTe
- 2011Crystal structures and thermal properties of some rare earth alkoxides with tertiary alcoholscitations
- 2009Atomic layer deposition of metal tellurides and selenides using alkylsilyl compounds of tellurium and seleniumcitations
- 2009Alkylsilyl compounds of selenium and tellurium
- 2007Study of a novel ALD process for depositing MgF2 thin filmscitations
- 2007Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylatescitations
Places of action
Organizations | Location | People |
---|
article
Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)(2)(THF) and H2O
Abstract
In this work, we have studied the applicability of Co(BTSA)(2)(THF) [BTSA = bis(trimethylsilyl)amido] (THF = tetrahydrofuran) in atomic layer deposition (ALD) of cobalt oxide thin films. When adducted with THF, the resulting Co(BTSA)(2)(THF) showed good volatility and could be evaporated at 55 degrees C, which enabled film deposition in the temperature range of 75-250 degrees C. Water was used as the coreactant, which led to the formation of Co(II) oxide films. The saturative growth mode characteristic to ALD was confirmed with respect to both precursors at deposition temperatures of 100 and 200 degrees C. According to grazing incidence x-ray diffraction measurements, the films contain both cubic rock salt and hexagonal wurtzite phases of CoO. X-ray photoelectron spectroscopy measurements confirmed that the primary oxidation state of cobalt in the films is +2. The film composition was analyzed using time-of-flight elastic recoil detection analysis, which revealed the main impurities in the films to be H and Si. The Si impurities originate from the BTSA ligand and increased with increasing deposition temperature, which indicates that Co(BTSA)(2)(THF) is best suited for low-temperature deposition. To gain insight into the surface chemistry of the deposition process, an in situ reaction mechanism study was conducted using quadrupole mass spectroscopy and quartz crystal microbalance techniques. Based on the in situ experiments, it can be concluded that film growth occurs via a ligand exchange mechanism. Published by the AVS. ; Peer reviewed