Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kaipio, Mikko Ari Ilmari

  • Google
  • 5
  • 26
  • 101

University of Helsinki

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2021Constructing Spacecraft Components Using Additive Manufacturing and Atomic Layer Deposition7citations
  • 2020In situ reaction mechanism study on atomic layer deposition of intermetallic Co3Sn2 thin films7citations
  • 2019Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)(2)(THF) and H2O5citations
  • 2019Atomic Layer Deposition of Photoconductive Cu2O Thin Films51citations
  • 2016Heteroleptic Cyclopentadienyl-Amidinate Precursors for Atomic Layer Deposition (ALD) of Y, Pr, Gd, and Dy Oxide Thin Films31citations

Places of action

Chart of shared publication
Porri, Paavo
1 / 4 shared
Nyman, Leo
1 / 8 shared
Pudas, Marko
1 / 10 shared
Salmi, Mika
1 / 28 shared
Miikkulainen, Ville
1 / 28 shared
Kallio, Esa
1 / 5 shared
Ritala, Mikko
5 / 194 shared
Silander, Rudolf
1 / 4 shared
Kestilä, Antti
1 / 6 shared
Nieminen, Heta-Elisa
2 / 6 shared
Leskelä, Markku Antero
3 / 124 shared
Meinander, Kristoffer
2 / 25 shared
Hatanpää, Timo Tapio
1 / 29 shared
Iivonen, Tomi
2 / 5 shared
Mizohata, Kenichiro
3 / 99 shared
Kim, Jiyeon
1 / 1 shared
Räisänen, Jyrki
3 / 41 shared
Kemell, Marianna Leena
1 / 47 shared
Mattinen, Miika Juhana
1 / 37 shared
Popov, Georgi
1 / 17 shared
Heikkilä, Mikko J.
1 / 48 shared
Niinistö, Jaakko
1 / 12 shared
Seppälä, Sanni
1 / 4 shared
Lansalot-Matras, Clement
1 / 1 shared
Blanquart, Timothee
1 / 4 shared
Noh, Wontae
1 / 3 shared
Chart of publication period
2021
2020
2019
2016

Co-Authors (by relevance)

  • Porri, Paavo
  • Nyman, Leo
  • Pudas, Marko
  • Salmi, Mika
  • Miikkulainen, Ville
  • Kallio, Esa
  • Ritala, Mikko
  • Silander, Rudolf
  • Kestilä, Antti
  • Nieminen, Heta-Elisa
  • Leskelä, Markku Antero
  • Meinander, Kristoffer
  • Hatanpää, Timo Tapio
  • Iivonen, Tomi
  • Mizohata, Kenichiro
  • Kim, Jiyeon
  • Räisänen, Jyrki
  • Kemell, Marianna Leena
  • Mattinen, Miika Juhana
  • Popov, Georgi
  • Heikkilä, Mikko J.
  • Niinistö, Jaakko
  • Seppälä, Sanni
  • Lansalot-Matras, Clement
  • Blanquart, Timothee
  • Noh, Wontae
OrganizationsLocationPeople

article

Atomic layer deposition of cobalt(II) oxide thin films from Co(BTSA)(2)(THF) and H2O

  • Kaipio, Mikko Ari Ilmari
  • Leskelä, Markku Antero
  • Meinander, Kristoffer
  • Hatanpää, Timo Tapio
  • Iivonen, Tomi
  • Mizohata, Kenichiro
  • Ritala, Mikko
  • Kim, Jiyeon
  • Räisänen, Jyrki
Abstract

In this work, we have studied the applicability of Co(BTSA)(2)(THF) [BTSA = bis(trimethylsilyl)amido] (THF = tetrahydrofuran) in atomic layer deposition (ALD) of cobalt oxide thin films. When adducted with THF, the resulting Co(BTSA)(2)(THF) showed good volatility and could be evaporated at 55 degrees C, which enabled film deposition in the temperature range of 75-250 degrees C. Water was used as the coreactant, which led to the formation of Co(II) oxide films. The saturative growth mode characteristic to ALD was confirmed with respect to both precursors at deposition temperatures of 100 and 200 degrees C. According to grazing incidence x-ray diffraction measurements, the films contain both cubic rock salt and hexagonal wurtzite phases of CoO. X-ray photoelectron spectroscopy measurements confirmed that the primary oxidation state of cobalt in the films is +2. The film composition was analyzed using time-of-flight elastic recoil detection analysis, which revealed the main impurities in the films to be H and Si. The Si impurities originate from the BTSA ligand and increased with increasing deposition temperature, which indicates that Co(BTSA)(2)(THF) is best suited for low-temperature deposition. To gain insight into the surface chemistry of the deposition process, an in situ reaction mechanism study was conducted using quadrupole mass spectroscopy and quartz crystal microbalance techniques. Based on the in situ experiments, it can be concluded that film growth occurs via a ligand exchange mechanism. Published by the AVS. ; Peer reviewed

Topics
  • impedance spectroscopy
  • surface
  • phase
  • x-ray diffraction
  • experiment
  • thin film
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • cobalt
  • atomic layer deposition