Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vresilovic, Daniel

  • Google
  • 1
  • 10
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Amorphous gallium oxide grown by low-temperature PECVD23citations

Places of action

Chart of shared publication
Boccard, Mathieu
1 / 6 shared
Kobayashi, Eiji
1 / 3 shared
Döbeli, Max
1 / 31 shared
Franta, Daniel
1 / 1 shared
Jeangros, Quentin
1 / 16 shared
Rodkey, Nathan
1 / 6 shared
Morales-Masis, Monica
1 / 24 shared
Hessler-Wyser, Aïcha
1 / 14 shared
Wolf, Stefaan De
1 / 6 shared
Ballif, Christophe
1 / 23 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Boccard, Mathieu
  • Kobayashi, Eiji
  • Döbeli, Max
  • Franta, Daniel
  • Jeangros, Quentin
  • Rodkey, Nathan
  • Morales-Masis, Monica
  • Hessler-Wyser, Aïcha
  • Wolf, Stefaan De
  • Ballif, Christophe
OrganizationsLocationPeople

article

Amorphous gallium oxide grown by low-temperature PECVD

  • Boccard, Mathieu
  • Kobayashi, Eiji
  • Döbeli, Max
  • Franta, Daniel
  • Jeangros, Quentin
  • Rodkey, Nathan
  • Morales-Masis, Monica
  • Hessler-Wyser, Aïcha
  • Wolf, Stefaan De
  • Vresilovic, Daniel
  • Ballif, Christophe
Abstract

<p>Owing to the wide application of metal oxides in energy conversion devices, the fabrication of these oxides using conventional, damage-free, and upscalable techniques is of critical importance in the optoelectronics community. Here, the authors demonstrate the growth of hydrogenated amorphous gallium oxide (a-GaO<sub>x</sub>:H) thin-films by plasma-enhanced chemical vapor deposition (PECVD) at temperatures below 200 °C. In this way, conformal films are deposited at high deposition rates, achieving high broadband transparency, wide band gap (3.5-4 eV), and low refractive index (1.6 at 500 nm). The authors link this low refractive index to the presence of nanoscale voids enclosing H<sub>2</sub>, as indicated by electron energy-loss spectroscopy. This work opens the path for further metal-oxide developments by low-temperature, scalable and damage-free PECVD processes.</p>

Topics
  • impedance spectroscopy
  • amorphous
  • void
  • chemical vapor deposition
  • Gallium