People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
France, Kevin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2018Ultrathin protective coatings by atomic layer engineering for far ultraviolet aluminum mirrorscitations
- 2017Enhanced atomic layer etching of native aluminum oxide for ultraviolet optical applicationscitations
- 2017Atomic layer deposition and etching methods for far ultraviolet aluminum mirrorscitations
- 2016Performance and prospects of far ultraviolet aluminum mirrors protected by atomic layer depositioncitations
- 2016Atomic Layer Deposited (ALD) coatings for future astronomical telescopes: recent developmentscitations
- 2014Recent developments and results of new ultraviolet reflective mirror coatingscitations
Places of action
Organizations | Location | People |
---|
article
Enhanced atomic layer etching of native aluminum oxide for ultraviolet optical applications
Abstract
We report on the development and application of an atomic layer etching (ALE) procedure based on alternating exposures of trimethylaluminum and anhydrous hydrogen fluoride (HF) implemented to controllably etch aluminum oxide. Our ALE process utilizes the same chemistry previously demonstrated in the atomic layer deposition of aluminum fluoride thin films, and can therefore be exploited to remove the surface oxide from metallic aluminum and replace it with thin fluoride layers in order to improve the performance of ultraviolet aluminum mirrors. This ALE process is modified relative to existing methods through the use of a chamber conditioning film of lithium fluoride, which is shown to enhance the loss of fluorine surface species and results in conformal layer-by-layer etching of aluminum oxide films. Etch properties were explored over a temperature range of 225 to 300 C with the Al2O3 etch rate increasing from 0.8 to 1.2per ALE cycle at a fixed HF exposure of 60 ms per cycle. The effective etch rate has a dependence on the total HF exposure, but the process is shown to be scalable to large area substrates with a post-etch uniformity of better than 2% demonstrated on 125 mm diameter wafers. The efficacy of the ALE process in reducing interfacial native aluminum oxide on evaporated aluminum mirrors is demonstrated with characterization by x-ray photoelectron spectroscopy and measurements of ultraviolet reflectance at wavelengths down to 120 nm....