Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kozen, Alexander C.

  • Google
  • 4
  • 31
  • 17

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Advanced Molecular Layer Deposition of Si<sub>x</sub>Zn<sub>y</sub>O<sub>z</sub> Thin Film Coatings for Improved Electrochemical Performance of NMC811citations
  • 2020Protection layers for metal anodescitations
  • 2017Plasma-assisted atomic layer epitaxial growth of aluminum nitride studied with real time grazing angle small angle x-ray scattering16citations
  • 2015Electrode Degradation Study of Vertically Aligned Carbon Nanotubes on a 3D Integrated Current Collector1citations

Places of action

Chart of shared publication
Buchine, Isaac
1 / 1 shared
Bravozhivotovskii, Dmitry
1 / 1 shared
Zysler, Melina
1 / 1 shared
Apeloig, Yitzhak
1 / 1 shared
Ejgenberg, Michal
1 / 2 shared
Bashkurov, Roman
1 / 1 shared
Lidorshalev, Ortal
1 / 1 shared
Leskes, Michal
1 / 3 shared
Kravchuk, Tatyana
1 / 1 shared
Akella, Sri Harsha
1 / 3 shared
Mukherjee, Ayan
1 / 4 shared
Lee, Sang Bok
3 / 4 shared
Wang, Yang
1 / 10 shared
Fan, Xiulin
1 / 1 shared
Wang, Longlong
1 / 1 shared
Hu, Liangbing
1 / 1 shared
Noked, Malakhi
1 / 1 shared
Schroeder, Marshall A.
2 / 2 shared
Rubloff, Gary W.
2 / 2 shared
Qadri, Syed B.
1 / 1 shared
Demasi, Alexander
1 / 1 shared
Hite, Jennifer K.
1 / 1 shared
Ludwig, Karl F.
1 / 2 shared
Anderson, Virginia R.
1 / 1 shared
Johnson, Scooter D.
1 / 1 shared
Robinson, Zachary R.
1 / 1 shared
Eddy, Charles R.
1 / 2 shared
Nepal, Neeraj
1 / 2 shared
Nath, Anindya
1 / 1 shared
Pearse, Alexander J.
1 / 1 shared
Noked, Malachi
1 / 1 shared
Chart of publication period
2024
2020
2017
2015

Co-Authors (by relevance)

  • Buchine, Isaac
  • Bravozhivotovskii, Dmitry
  • Zysler, Melina
  • Apeloig, Yitzhak
  • Ejgenberg, Michal
  • Bashkurov, Roman
  • Lidorshalev, Ortal
  • Leskes, Michal
  • Kravchuk, Tatyana
  • Akella, Sri Harsha
  • Mukherjee, Ayan
  • Lee, Sang Bok
  • Wang, Yang
  • Fan, Xiulin
  • Wang, Longlong
  • Hu, Liangbing
  • Noked, Malakhi
  • Schroeder, Marshall A.
  • Rubloff, Gary W.
  • Qadri, Syed B.
  • Demasi, Alexander
  • Hite, Jennifer K.
  • Ludwig, Karl F.
  • Anderson, Virginia R.
  • Johnson, Scooter D.
  • Robinson, Zachary R.
  • Eddy, Charles R.
  • Nepal, Neeraj
  • Nath, Anindya
  • Pearse, Alexander J.
  • Noked, Malachi
OrganizationsLocationPeople

article

Plasma-assisted atomic layer epitaxial growth of aluminum nitride studied with real time grazing angle small angle x-ray scattering

  • Kozen, Alexander C.
  • Qadri, Syed B.
  • Demasi, Alexander
  • Hite, Jennifer K.
  • Ludwig, Karl F.
  • Anderson, Virginia R.
  • Johnson, Scooter D.
  • Robinson, Zachary R.
  • Eddy, Charles R.
  • Nepal, Neeraj
  • Nath, Anindya
Abstract

Wide bandgap semiconducting nitrides have found wide-spread application as light emitting and laser diodes and are under investigation for further application in optoelectronics, photovoltaics, and efficient power switching technologies. Alloys of the binary semiconductors allow adjustments of the band gap, an important semiconductor material characteristic, which is 6.2 eV for aluminum nitride (AlN), 3.4 eV for gallium nitride, and 0.7 eV for (InN). Currently, the highest quality III-nitride films are deposited by metalorganic chemical vapor deposition and molecular beam epitaxy. Temperatures of 900 °C and higher are required to deposit high quality AlN. Research into depositing III-nitrides with atomic layer epitaxy (ALEp) is ongoing because it is a fabrication friendly technique allowing lower growth temperatures. Because it is a relatively new technique, there is insufficient understanding of the ALEp growth mechanism which will be essential to development of the process. Here, grazing incidence small angle x-ray scattering is employed to observe the evolving behavior of the surface morphology during growth of AlN by ALEp at temperatures from 360 to 480 °C. Increased temperatures of AlN resulted in lower impurities and relatively fewer features with short range correlations.

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • aluminium
  • semiconductor
  • nitride
  • chemical vapor deposition
  • small angle x-ray scattering
  • Gallium