Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pigram, Paul

  • Google
  • 10
  • 36
  • 88

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2023New insight into degradation mechanisms of conductive and thermally resistant polyaniline films6citations
  • 2023Comparison of Tiling Artifact Removal Methods in Secondary Ion Mass Spectrometry Images1citations
  • 2023Two-Dimensional and Three-Dimensional Time-of-Flight Secondary Ion Mass Spectrometry Image Feature Extraction Using a Spatially Aware Convolutional Autoencoder15citations
  • 2023Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF‐SIMS and Self‐Organizing maps8citations
  • 2022Applications of multivariate analysis and unsupervised machine learning to ToF-SIMS images of organic, bioorganic, and biological systemscitations
  • 2020ToF-SIMS and machine learning for single-pixel molecular discrimination of an acrylate polymer microarraycitations
  • 2020Analyzing 3D Hyperspectral ToF-SIMS Depth Profile Data Using Self-Organizing Map-Relational Perspective Mapping17citations
  • 2018Distinguishing chemically similar polyamide materials with ToF-SIMS using self-organizing maps and a universal data matrix24citations
  • 2017Determining the limit of detection of surface bound antibody8citations
  • 2016Chromium functionalized diglyme plasma polymer coating enhances enzyme-linked immunosorbent assay performance9citations

Places of action

Chart of shared publication
Martinez Botella, Ivan
1 / 1 shared
Gozukara, Yesim
1 / 3 shared
Yalcin, Dilek
1 / 3 shared
Bruton, Eric A.
1 / 1 shared
Kinlen, Patrick
1 / 1 shared
Kohl, Tom
1 / 1 shared
Bamford, Sarah
1 / 1 shared
Espiritu, Maria
1 / 1 shared
Alexander, David
2 / 4 shared
Howard, Shaun
1 / 4 shared
Greaves, Mark
1 / 2 shared
Muir, Benjamin Ward
7 / 14 shared
Crewther, Sheila
1 / 1 shared
Halliday, Mark
1 / 1 shared
Gardner, Wil
6 / 8 shared
Chouinard, Philippe
1 / 1 shared
Scurr, David
1 / 3 shared
Torney, Steven
1 / 1 shared
Winkler, David
3 / 3 shared
Pietersz, Geoffrey
1 / 2 shared
Cutts, Suzanne M.
2 / 2 shared
Hook, Andrew L.
1 / 5 shared
Chang, Chien-Yi
1 / 1 shared
Ballabio, Davide
3 / 5 shared
Martyn, C. Davies
1 / 1 shared
Wong, See Yoong
1 / 2 shared
Alexander, Morgan
2 / 4 shared
Williams, Paul
1 / 7 shared
Mei, Ying
1 / 2 shared
Hook, Andrew
1 / 1 shared
Muir, Ben
3 / 10 shared
Winkler, Dave
2 / 17 shared
Madiona, Robert
3 / 3 shared
Bamford, S.
1 / 1 shared
Welch, Nicholas
2 / 2 shared
Jones, Robert
1 / 2 shared
Chart of publication period
2023
2022
2020
2018
2017
2016

Co-Authors (by relevance)

  • Martinez Botella, Ivan
  • Gozukara, Yesim
  • Yalcin, Dilek
  • Bruton, Eric A.
  • Kinlen, Patrick
  • Kohl, Tom
  • Bamford, Sarah
  • Espiritu, Maria
  • Alexander, David
  • Howard, Shaun
  • Greaves, Mark
  • Muir, Benjamin Ward
  • Crewther, Sheila
  • Halliday, Mark
  • Gardner, Wil
  • Chouinard, Philippe
  • Scurr, David
  • Torney, Steven
  • Winkler, David
  • Pietersz, Geoffrey
  • Cutts, Suzanne M.
  • Hook, Andrew L.
  • Chang, Chien-Yi
  • Ballabio, Davide
  • Martyn, C. Davies
  • Wong, See Yoong
  • Alexander, Morgan
  • Williams, Paul
  • Mei, Ying
  • Hook, Andrew
  • Muir, Ben
  • Winkler, Dave
  • Madiona, Robert
  • Bamford, S.
  • Welch, Nicholas
  • Jones, Robert
OrganizationsLocationPeople

article

Chromium functionalized diglyme plasma polymer coating enhances enzyme-linked immunosorbent assay performance

  • Muir, Ben
  • Madiona, Robert
  • Welch, Nicholas
  • Pigram, Paul
  • Jones, Robert
Abstract

Ensuring the optimum orientation, conformation, and density of substrate-bound antibodies is critical for the success of sandwich enzyme-linked immunosorbent assays (ELISAs). In this work, the authors utilize a diethylene glycol dimethyl ether plasma polymer (DGpp) coating, functionalized with chromium within a 96 well plate for the enhanced immobilization of a capture antibody. For an equivalent amount of bound antibody, a tenfold improvement in the ELISA signal intensity is obtained on the DGpp after incubation with chromium, indicative of improved orientation on this surface. Time-of-flight secondary-ion-mass-spectrometry (ToF-SIMS) and principal component analysis were used to probe the molecular species at the surface and showed ion fragments related to lysine, methionine, histidine, and arginine coupled to chromium indicating candidate antibody binding sites. A combined x-ray photoelectron spectroscopy and ToF-SIMS analysis provided a surface molecular characterization that demonstrates antibody binding via the chromium complex. The DGpp+Cr surface treatment holds great promise for improving the efficacy of ELISAs.

Topics
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • chromium
  • x-ray photoelectron spectroscopy
  • spectrometry
  • selective ion monitoring