People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mursakulov, Niyazi N.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
RBS-channeling study of radiation damage in Ar+ implanted CuInSe2 crystals
Abstract
Chalcopyrite solar cells are reported to have a high tolerance to irradiation by high energy electrons or ions, but the origin of this is not well understood. This work studies the evolution of damage in Ar + -bombarded CuInSe 2single crystal using Rutherford backscattering/channeling analysis. Ar +ions of 30 keV were implanted with doses in the range from 10 12to 3 × 10 16cm -2at room temperature. Implantation was found to create two layers of damage: (1) on the surface, caused by preferential sputtering of Se and Cu atoms; (2) at the layer of implanted Ar, possibly consisting of stacking faults and dislocation loops. The damage in the second layer was estimated to be less than 2% of the theoretical prediction suggesting efficient healing of primary implantation defects.