People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lockyer, Nicholas P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023A high-resolution versatile focused ion implantation platform for nanoscale engineeringcitations
- 2016Evaluation of biomolecular distributions in rat brain tissues by means of ToF-SIMS using a continuous beam of Ar clusterscitations
- 2015Mass spectrometric imaging of brain tissue by time-of-flight secondary ion mass spectrometry - How do polyatomic primary beams C 60 + , Ar 2000 + , water-doped Ar 2000 + and (H 2 O) 6000 + compare?citations
- 2015Mass spectrometric imaging of brain tissue by time-of-flight secondary ion mass spectrometry – How do polyatomic primary beams C60+, Ar2000+, water-doped Ar2000+ and (H2O)6000+ compare?citations
- 2013Time-of-flight SIMS as a novel approach to unlocking the hypoxic properties of cancercitations
- 2013Peptide structural analysis using continuous Ar cluster and C60 ion beamscitations
- 2013Peptide structural analysis using continuous Ar cluster and C60 ion beamscitations
- 2013Peak picking as a pre-processing technique for imaging time of flight secondary ion mass spectrometrycitations
- 2013ToF-SIMS as a tool for metabolic profiling small biomolecules in cancer systemscitations
- 2012Peak picking as a pre-processing technique for imaging time of flight secondary ion mass spectrometry
- 2011Three-dimensional mass spectral imaging of HeLa-M cells - Sample preparation, data interpretation and visualisationcitations
- 2010Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancercitations
- 2010Effects of cryogenic sample analysis on molecular depth profiles with TOF-secondary ion mass spectrometrycitations
- 2008Subsurface biomolecular imaging of Streptomyces coelicolor using secondary ion mass spectrometrycitations
- 2008Discrimination of prostate cancer cells and non-malignant cells using secondary ion mass spectrometrycitations
- 2008A new dynamic in mass spectral imaging of single biological cellscitations
- 2004The combined application of FTIR microspectroscopy and ToF-SIMS imaging in the study of prostate cancercitations
Places of action
Organizations | Location | People |
---|
article
Evaluation of biomolecular distributions in rat brain tissues by means of ToF-SIMS using a continuous beam of Ar clusters
Abstract
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides detailed chemical structure information and high spatial resolutionimages. Therefore, ToF-SIMS is useful for studying biological phenomena such as ischemia. In this study, in order to evaluate cerebral microinfarction, the distribution of biomolecules generated by ischemia was measured with ToF-SIMS. ToF-SIMS data sets were analyzed by means of multivariate analysis for interpreting complex samples containing unknown information and to obtain biomolecular mapping indicated by fragment ions from the target biomolecules. Using conventional ToF-SIMS (primary ion source: Bi cluster ion), it is difficult to detect secondary ions beyond approximately 1000 u. Moreover, the intensity of secondary ions related to biomolecules is not always high enough for imaging because of low concentration even if the masses are lower than 1000 u. However, for the observation of biomolecular distributions in tissues, it is important to detect low amounts of biological molecules from a particular area of tissue. Rat braintissue samples were measured with ToF-SIMS (J105, Ionoptika, Ltd., Chandlers Ford, UK), using a continuous beam of Ar clusters as a primary ion source. ToF-SIMS with Ar clusters efficiently detects secondary ions related to biomolecules and larger molecules. Molecules detected by ToF-SIMS were examined by analyzing ToF-SIMS data using multivariate analysis. Microspheres (45 μm diameter) were injected into the rat unilateral internal carotid artery (MS rat) to cause cerebral microinfarction. The rat brain was sliced and then measured with ToF-SIMS. The brain samples of a normal rat and the MS rat were examined to find specific secondary ions related to important biomolecules, and then the difference between them was investigated. Finally, specific secondary ions were found around vessels incorporating microspheres in the MS rat. The results suggest that important biomolecules related to cerebral microinfarction can be detected by ToF-SIMS.