People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Busani, Tito
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023Vertical Etching of Scandium Aluminum Nitride Thin Films Using TMAH Solutioncitations
- 2021Nanocomposite-seeded Single-Domain Growth of Lithium Niobate Thin Films for Photonic Applicationscitations
- 2014Characterization of surface defects on Be-implanted GaSbcitations
- 2013Current transport mechanism at metal-semiconductor nanoscale interfaces based on ultrahigh density arrays of p-type NiO nano-pillarscitations
- 2012p-Type CuxO Films Deposited at Room Temperature for Thin-Film Transistorscitations
- 2012Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)(3)citations
- 2012Multifunctional zinc oxide nanostructures for a new generation of devicescitations
- 2011Away from silicon era: the paper electronicscitations
Places of action
Organizations | Location | People |
---|
article
Characterization of surface defects on Be-implanted GaSb
Abstract
<jats:p>Characteristics of ion implantation induced damage in GaSb, and its removal by rapid thermal annealing, are investigated by cross-sectional transmission electron microscopy. Rapid thermal annealing (RTA) has been implemented on implanted GaSb for various temperatures and durations with the semiconductor capped, which avoids Sb out-diffusion and Ga agglomeration during the process. The RTA damage induced in the GaSb wafer was studied by scanning electron microscopy and energy dispersive x-ray spectroscopy. The results of the microscopy study were then used to optimize the RTA recipe and the Si3N4 capping layer thickness to achieve doping activation while minimizing crystalline damage. Results indicate a lattice quality that is close to pristine GaSb for samples annealed at 600 °C for 10 s using 260 nm thick Si3N4 capping layer. Secondary ion mass spectrometry measurement indicates that the implanted Be does not migrate in the GaSb at the used annealing temperature. Finally, electrical characteristics of diodes fabricated from the implanted material are presented that exhibit low series resistance and high shunt resistance suitable for photovoltaic applications.</jats:p>