Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Benner, Frank

  • Google
  • 1
  • 7
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014Atomic layer deposited high-κ nanolaminates for silicon surface passivation25citations

Places of action

Chart of shared publication
Bartha, Johann W.
1 / 2 shared
Richter, Claudia
1 / 7 shared
Knaut, Martin
1 / 6 shared
Simon, Daniel K.
1 / 3 shared
Mikolajick, Thomas
1 / 92 shared
Jordan, Paul M.
1 / 3 shared
Dirnstorfer, Ingo
1 / 3 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Bartha, Johann W.
  • Richter, Claudia
  • Knaut, Martin
  • Simon, Daniel K.
  • Mikolajick, Thomas
  • Jordan, Paul M.
  • Dirnstorfer, Ingo
OrganizationsLocationPeople

article

Atomic layer deposited high-κ nanolaminates for silicon surface passivation

  • Bartha, Johann W.
  • Richter, Claudia
  • Knaut, Martin
  • Simon, Daniel K.
  • Mikolajick, Thomas
  • Benner, Frank
  • Jordan, Paul M.
  • Dirnstorfer, Ingo
Abstract

<p>Nanolaminates comprising of TiO<sub>2</sub> or HfO<sub>2</sub> sublayers within an Al<sub>2</sub>O<sub>3</sub> matrix are grown with atomic layer deposition. These nanolaminates provide an improved silicon surface passivation compared to conventional Al<sub>2</sub>O<sub>3</sub> films. The physical properties of the nanolaminates can be described with a dynamic growth model that considers initial and steady-state growth rates for the involved metal oxides. This model links the cycle ratios of the different atomic layer deposition precursors to the thickness and the material concentrations of the nanolaminate, which are determined by means of spectroscopic ellipsometry. Effective carrier lifetime measurements show that Al<sub>2</sub>O <sub>3</sub>-TiO<sub>2</sub> nanolaminates achieve values of up to 6.0 ms at a TiO<sub>2</sub> concentration of 0.2%. In Al<sub>2</sub>O<sub>3</sub>-HfO <sub>2</sub> nanolaminates, a maximum effective carrier lifetime of 5.5 ms is reached at 7% HfO<sub>2</sub>. Electrical measurements show that the TiO <sub>2</sub> incorporation causes strong hysteresis effects, which are linked to the trapping of negative charges and result in an enhanced field effect passivation. For the Al<sub>2</sub>O<sub>3</sub>-HfO<sub>2</sub> nanolaminates, the capacitance data clearly show a very low density of interface traps (below 5·10<sup>10</sup>eV<sup>-1</sup>·cm<sup>-2</sup>) and a reduction of the fixed charge density with increasing HfO<sub>2</sub> concentration. Due to the low number of recombination centers near the surface, the reduced field effect passivation only had a minor impact on the effective carrier lifetime.</p>

Topics
  • density
  • impedance spectroscopy
  • surface
  • mass spectrometry
  • Silicon
  • ellipsometry
  • atomic layer deposition