Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tanskanen, Jarno M. A.

  • Google
  • 1
  • 7
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Atomic layer deposited iridium oxide thin film as microelectrode coating in stem cell applications12citations

Places of action

Chart of shared publication
Hämäläinen, Jani Marko Antero
1 / 20 shared
Lekkala, Jukka
1 / 12 shared
Narkilahti, Susanna
1 / 3 shared
Ylä-Outinen, Laura
1 / 1 shared
Hyttinen, Jari
1 / 6 shared
Ryynänen, Tomi
1 / 5 shared
Leskelä, Markku Antero
1 / 124 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Hämäläinen, Jani Marko Antero
  • Lekkala, Jukka
  • Narkilahti, Susanna
  • Ylä-Outinen, Laura
  • Hyttinen, Jari
  • Ryynänen, Tomi
  • Leskelä, Markku Antero
OrganizationsLocationPeople

article

Atomic layer deposited iridium oxide thin film as microelectrode coating in stem cell applications

  • Hämäläinen, Jani Marko Antero
  • Lekkala, Jukka
  • Narkilahti, Susanna
  • Ylä-Outinen, Laura
  • Hyttinen, Jari
  • Tanskanen, Jarno M. A.
  • Ryynänen, Tomi
  • Leskelä, Markku Antero
Abstract

Microelectrodes of microelectrode arrays (MEAs) used in cellular electrophysiology studies were coated with iridium oxide (IrOx) thin film using atomic layer deposition (ALD). This work was motivated by the need to find a practical alternative to commercially used titanium nitride (TiN) microelectrode coating. The advantages of ALD IrOx coating include decreased impedance and noise levels and improved stimulation capability of the microelectrodes compared to uncoated microelectrodes. The authors’ process also takes advantage of ALD’s exact process control and relatively low source material start costs compared to traditionally used sputtering and electrochemical methods. Biocompatibility and suitability of ALD IrOx microelectrodes for stem cell research applications were verified by culturing human embryonic stem cell derived neuronal cells for 28 days on ALD IrOx MEAs and successfully measuring electrical activity of the cell network. Electrode impedance of 450 kΩ at 1 kHz was achieved with ALD IrOx in the authors’ 30 μm microelectrodes. This is better than that reported for any uncoated microelectrodes with equal size, even equal to that of inactivated sputtered IrOx coating. Also, stimulation capability was demonstrated. However, further development, including, e.g., applying electrochemical activation, is needed to achieve the performance of commercial TiN-coated microelectrodes.

Topics
  • impedance spectroscopy
  • thin film
  • nitride
  • titanium
  • activation
  • tin
  • biocompatibility
  • atomic layer deposition
  • Iridium