People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holopainen, Jani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Effect of Atomic-Layer-Deposited Hydroxyapatite Coating on Surface Thrombogenicity of Titaniumcitations
- 2022Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique: Estimation of Bioactivity and Nanomechanical Properties
- 2022Osteoblast Attachment on Titanium Coated with Hydroxyapatite by Atomic Layer Depositioncitations
- 2019Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Technique : Estimation of Bioactivity and Nanomechanical Propertiescitations
- 2019Titania Nanotubes/Hydroxyapatite Nanocomposites Produced with the Use of the Atomic Layer Deposition Techniquecitations
- 2018Adhesion and mechanical properties of nanocrystalline hydroxyapatite coating obtained by conversion of atomic layer-deposited calcium carbonate on titanium substratecitations
- 2016Atomic Layer Deposition of Metal Phosphates and Lithium Silicates
- 2012Study of amorphous lithium silicate thin films grown by atomic layer depositioncitations
- 2012Lithium Phosphate Thin Films Grown by Atomic Layer Depositioncitations
Places of action
Organizations | Location | People |
---|
article
Study of amorphous lithium silicate thin films grown by atomic layer deposition
Abstract
Lithium silicate thin films, which are interesting materials for example in lithium ion batteries, were grown by the atomic layer deposition technique from lithium hexamethyldisilazide [LiHMDS, Li(N(SiMe3)2)] and ozone precursors. Films were obtained at a wide deposition temperature range between 150 and 400 °C. All the films were amorphous except at 400 °C, where partial decomposition of LiHMDS was also observed. The growth behavior was examined in detail at 250 °C, and saturation of growth rates and refractive indices with precursor doses was confirmed, thereby verifying self-limiting surface reactions. Likewise, the linear thickness dependence of the films with the number of deposition cycles was verified. Strong dependence of growth rate and film composition on deposition temperature was also seen. Overall, the amorphous films grown at 250 °C had a stoichiometry close to lithium metasilicate (Li2.0SiO2.9) with 0.7 at. % carbon and 4.6 at. % hydrogen impurities. The corresponding growth rate and refractive index (n580) were 0.8 Å/cycle and about 1.55.