People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Petersen, Dirch Hjorth
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Electron-vacancy scattering in SrNbO3 and SrTiO3
- 2024Deconvolution of heat sources for application in thermoelectric micro four-point probe measurementscitations
- 2023Octahedral distortions in SrNbO3citations
- 2022Review of Micro- and Nanoprobe Metrology for Direct Electrical Measurements on Product Waferscitations
- 2022Determination of thermoelectric properties from micro four-point probe measurementscitations
- 2021Effective electrical resistivity in a square array of oriented square inclusionscitations
- 2019Exploring conductivity in ex-situ doped Si thin films as thickness approaches 5 nmcitations
- 2019Exploring conductivity in ex-situ doped Si thin films as thickness approaches 5 nmcitations
- 2017High temperature SU-8 pyrolysis for fabrication of carbon electrodescitations
- 2016Defect evolution and dopant activation in laser annealed Si and Gecitations
- 2016Defect evolution and dopant activation in laser annealed Si and Gecitations
- 2016Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Coppercitations
- 2016Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Coppercitations
- 2016Pyrolytic carbon microelectrodes for impedance based cell sensingcitations
- 2015Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gatecitations
- 2014Electrical characterization of sputtered ZnO:Al films with microprobe technique
- 2014Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Currentcitations
- 2014Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Currentcitations
- 2014Laser thermal annealing of Ge, optimized for highly activated dopants and diode ION/IOFF ratios
- 2012In-situ Ga doping of fully strained Ge1-xSnx heteroepitaxial layers grown on Ge(001) substratescitations
- 2012Activation and thermal stability of ultra-shallow B+-implants in Ge
- 2012Activation and thermal stability of ultra-shallow B + -implants in Gecitations
- 2012Effect of B + Flux on the electrical activation of ultra-shallow B + implants in Ge
- 2012Effect of B+ Flux on the electrical activation of ultra-shallow B+ implants in Ge
- 2011Ultra Shallow Arsenic Junctions in Germanium Formed by Millisecond Laser Annealingcitations
- 2011Ultra Shallow Arsenic Junctions in Germanium Formed by Millisecond Laser Annealingcitations
- 2010Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam millingcitations
- 2010Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam millingcitations
- 2010Study of submelt laser induced junction nonuniformities using Therma-Probecitations
- 2008Impact of multiple sub-melt laser scans on the activation and diffusion of shallow Boron junctionscitations
- 2008Comparative study of size dependent four-point probe sheet resistance measurement on laser annealed ultra-shallow junctionscitations
- 2008Epitaxial Integration of Nanowires in Microsystems by Local Micrometer Scale Vapor Phase Epitaxycitations
- 2002Simulated SAM A-scans on multilayer MEMS components
Places of action
Organizations | Location | People |
---|
article
Study of submelt laser induced junction nonuniformities using Therma-Probe
Abstract
Submelt laser annealing is a promising technique to achieve the required sheet resistance and junction depth specifications for the 32 nm technology node and beyond. In order to obtain a production worthy process, it is important to minimize possible nonuniformities caused by the annealing process both at macroscopic and microscopic levels. In this work, the authors present high resolution Therma-Probe® measurements to assess the junction nonuniformity on 0.5 keV boron junctions and zoom in on the effect of temperature variations and multiple subsequent laser scans. The results are compared to standard and micro-four-point probe sheet resistance data, secondary ion mass spectrometry, and Hall measurements obtained during earlier studies. Besides the impact of the nonuniformities on the “conventional” thermal wave signal, theyfound a strong correlation to the dc reflectance of the probe laser (lambda = 675 nm). The dc probe reflectance is dominated by free carriers and is highly correlated to the sheet resistance both on blanket wafers and on real device wafers. ©2010 American Vacuum Society