People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jacobson, Joseph M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2007Investigation of alternative compounds to poly(E-MA) as a polymeric surfactant for preparation of microcapsules by phase separation method.citations
- 2004Conductive nanostructure fabrication by focused ion beam direct-writing of silver nanoparticlescitations
- 2003Nanotectonics: Direct Fabrication of All-Inorganic Logic Elements and Micro-Electro-Mechanical Systems from Nanoparticle Precursors
- 2002Nanostructure fabrication by direct electron-beam writing of nanoparticlescitations
Places of action
Organizations | Location | People |
---|
article
Nanostructure fabrication by direct electron-beam writing of nanoparticles
Abstract
Direct additive-layer fabrication of nanostructures is a widely sought goal, which is not possible using traditional layered resist optical and electron-beam lithographic techniques. However, recently, it has been shown that certain metallic and semiconducting nanoparticles capped with protective organic groups are promising “inklike” resist materials for patterning a variety of electronic and mechanical structures [C. A. Bulthaup et al., Appl. Phys. Lett. 79, 1525 (2001)]. Several groups have successfully patterned single-layer gold nanoparticle films by means of direct electron-beam writing [X. M. Lin, R. Parthasarathy, and H. M. Jaeger, Appl. Phys. Lett. 78, 1915 (2001); T. R. Bedson, R. E. Palmer, T. E. Jenkins, D. J. Hayton, and J. P. Wilcoxon, Appl. Phys. Lett. 78, 1921 (2001); L. Clarke et al., Appl. Phys. Lett. 71, 617 (1997)]. In this work, we apply these materials in a new lithographic mode, using an electron beam to cause direct sintering of these 2–10 nm nanoparticles, building structures of multiple layers and multiple materials with linewidth resolutions of 80–100 nm.