Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vahedi, Vahid

  • Google
  • 1
  • 4
  • 75

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Maintaining reproducible plasma reactor wall conditions: SF6 plasma cleaning of films deposited on chamber walls during Cl2/O2 plasma etching of Si75citations

Places of action

Chart of shared publication
Daugherty, John
1 / 1 shared
Singh, Harmeet
1 / 2 shared
Aydil, Eray S.
1 / 9 shared
Ullal, Saurabh J.
1 / 1 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Daugherty, John
  • Singh, Harmeet
  • Aydil, Eray S.
  • Ullal, Saurabh J.
OrganizationsLocationPeople

article

Maintaining reproducible plasma reactor wall conditions: SF6 plasma cleaning of films deposited on chamber walls during Cl2/O2 plasma etching of Si

  • Daugherty, John
  • Vahedi, Vahid
  • Singh, Harmeet
  • Aydil, Eray S.
  • Ullal, Saurabh J.
Abstract

<jats:p>Silicon oxychloride films deposited on plasma etching reactor walls during the Cl2/O2 plasma etching of Si must be removed to return the reactor to a reproducible state prior to etching the next wafer. Using multiple surface and plasma diagnostics, we have investigated the removal of this silicon oxychloride film using an SF6 plasma. In particular, a diagnostic technique based on the principles of multiple total internal reflection Fourier transform infrared spectroscopy was used to monitor the films that formed on the reactor walls. The silicon oxychloride film etching proceeds by incorporation of F, which also abstracts and replaces the Cl atoms in the film. If the SF6 plasma is not maintained for a sufficiently long period to remove all the deposits, the F incorporated into the film leaches out into the gas phase during the subsequent etch processes. This residual F can have undesirable effects on the etching performance and the wafer-to-wafer reproducibility. The removal of the silicon oxychloride film from the reactor walls is inherently nonuniform and the end of the cleaning can be detected most easily by monitoring reactor averaged F and SiF emissions.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • Silicon
  • gas phase
  • Fourier transform infrared spectroscopy
  • plasma etching