People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mccullough, Rw W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Electrical characteristics of nitrogen incorporated hydrogenated amorphous carbon
Abstract
Nitrogen incorporation into hydrogenated amorphous carbon (a-C:H) films has recently attracted a wide range of interest due to its contribution in reducing film stress and improving field emission properties. In this work we characterize the electrical properties of nitrogen containing a-C:H films. The a-C:H films were prepared by plasma enhanced chemical vapor deposition in an acetylene (C2H2) environment with a range of bias voltages. Nitrogen incorporation was achieved by exposing the films to an atomic nitrogen flux from a rf plasma with up to 40% dissociation and atomic nitrogen fluxes of up to 0.85×1018 atoms s−1. Raman results indicate that the doping process is accompanied by some structural changes seen by the G-band peak shifts. X-ray photoelectron spectroscopy spectra suggest that the dopant levels exceed those previously reported. Capacitance probe and I–V techniques showed a decrease in contact potential difference and density of states for doped films, indicating a rise in the Fermi level.