Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Eschen, Kevin

  • Google
  • 5
  • 3
  • 100

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020Amplifying and Leveraging Generated Force upon Heating and Cooling in SMA Knitted Actuators20citations
  • 2019Design and Control of Reduced Power Actuation for Active-Contracting Orthostatic Intolerance Garmentscitations
  • 2019Functionally Graded Knitted Actuators with NiTi-Based Shape Memory Alloys for Topographically Self-Fitting Wearables70citations
  • 2017Preliminary Experimental Study of the Effect of Shape Setting on Knitted SMA Structures6citations
  • 2017Effect of Geometric Design Parameters on Contractile SMA Knitted Actuator Performance4citations

Places of action

Chart of shared publication
Abel, Julianna
3 / 8 shared
Granberry, Rachael
3 / 4 shared
Ii, Santo Padula
1 / 1 shared
Chart of publication period
2020
2019
2017

Co-Authors (by relevance)

  • Abel, Julianna
  • Granberry, Rachael
  • Ii, Santo Padula
OrganizationsLocationPeople

document

Effect of Geometric Design Parameters on Contractile SMA Knitted Actuator Performance

  • Eschen, Kevin
Abstract

<jats:p>Shape memory alloy (SMA) knitted actuators are a type of functional fabric that uses shape memory alloy wire as an active fiber within a knitted textile. Through intentional design of the SMA knitted actuator geometry, various two- and three-dimensional actuation motions, such as scrolling and contraction [1], can be accomplished. Contractile SMA knitted actuators leverage the unique thermo-mechanical properties of SMA wires by integrating them within the hierarchical knitted structure to achieve large distributed uniaxial contractions and variable stiffness behavior upon thermal actuation. During the knit manufacturing process, the SMA wire is bent into a network of interlacing adjacent loops, storing potential energy within the contractile SMA knitted actuator. Thermal actuation above the wire-specific austenite finish temperature leads to a partial recovery of the bending deformations, resulting in large distributed uniaxial contraction (15–40% actuation contraction observed) of the SMA knitted actuator. The achievable load capacity and %-actuation contraction are dependent on the geometric loop parameters of the contractile SMA knitted actuator. While exact descriptions of the geometric loop parameters exist, a reduction of the geometric complexity is advantageous for high-level contractile SMA knitted actuator design procedures. This paper defines a simple geometric measure, the non-dimensional knit density, and experimentally correlates the contractile SMA knitted actuator performance to this measure. The experimentally demonstrated dependency of relevant actuator metrics on the knit density and the wire diameter, suggests the usability of the simplified geometry definition for a high-level contractile SMA knitted actuator design.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • wire