Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Alexander, Paul

  • Google
  • 3
  • 50
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Search for the Epoch of Reionization with HERA: upper limits on the closure phase delay power spectrum3citations
  • 2013Design of SMA Helical Actuators: An Experimental Study5citations
  • 2013Model-Based Shape Memory Alloy Wire Ratchet Actuator Design2citations

Places of action

Chart of shared publication
Utter, Brent
2 / 2 shared
Luntz, Jonathan
2 / 2 shared
Czarnocki, Isabel
1 / 1 shared
Kim, Wonhee
2 / 5 shared
Brei, Diann
2 / 2 shared
Muhammad, Hanif
1 / 3 shared
Chart of publication period
2023
2013

Co-Authors (by relevance)

  • Utter, Brent
  • Luntz, Jonathan
  • Czarnocki, Isabel
  • Kim, Wonhee
  • Brei, Diann
  • Muhammad, Hanif
OrganizationsLocationPeople

document

Model-Based Shape Memory Alloy Wire Ratchet Actuator Design

  • Utter, Brent
  • Luntz, Jonathan
  • Muhammad, Hanif
  • Alexander, Paul
  • Kim, Wonhee
  • Brei, Diann
Abstract

<jats:p>Shape Memory Alloy (SMA) wire ratchet actuators overcome SMA wire strain limitations by accumulating actuation stroke over multiple cycles. The underlying architecture is effective for producing large strokes from a small package, creating continuous rotation or extended displacement, and precise. It also provides discrete positioning with zero-power hold. While there have been several successful implementations of SMA ratchet actuators, most are designed ad-hoc since limited models exist to predict the stroke and force interaction during actuation cycles. Since the SMA wire actuation is highly dependent on the forces experienced through the ratchet mechanism, a model requires the prediction of the force interaction between the rack and pawl teeth along with friction in the device, and of the external force variation over actuation cycles due to the relative position change between the external system and the SMA wire. This paper presents a model-based systematic design methodology for SMA ratchet actuator which actuates position-dependent external systems. A generalized ratchet mechanism and operation sequence is introduced along with a force balance model for both austenite and martensite equilibrium to address the mechanical coupling changes. Analytical kinematic and kineto-static rack and pawl interaction models are reviewed, which feed into the force balance models. The effective stroke is evaluated by subtracting backlash from the SMA wire stroke, found through equilibrium with the mechanism and external system. This effective stroke accumulates to produce the overall actuator motion. A design methodology is suggested along with visualization methods to aid design decisions. Parametric studies expose the effects of design parameters on the SMA ratchet actuator to gain further design insight. This model-based design foundation and parametric understanding enable the synthesis of SMA wire ratchet actuators.</jats:p>

Topics
  • impedance spectroscopy
  • wire