People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Laffont, Guillaume
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Ceramic-coated type III femtosecond Fiber Bragg Grating for high temperature environments
- 2023Ultrasonic Guided Waves Measurements using Bragg Gratings in Optical Fibers under Varying Environmental Conditionscitations
- 2023Ultrasonic guided waves measurements using Fiber Bragg Gratings on optical fibers under varying environmental conditionscitations
- 2022Selective Laser Melting In Situ Temperature Monitoring Using Femtosecond Point-by-Point Fiber Bragg Gratingscitations
- 2022New shapemeter roll technology based on Fiber Bragg Grating technology for on-line flatness monitoring of thin cold rolled metal sheetscitations
- 2019Guided wave imaging of a composite plate using passive acquisitons by Fiber Bragg Gratings on optical fibers
- 2018Passive guided waves measurements using fiber Bragg gratings sensorscitations
- 2017Temperature Resistant Fiber Bragg Gratings for Online Monitoring of Future Sodium cooled Fast Reactors: Paving the Way to SHM Implantation into the Nuclear Industry
- 2015Irradiation campaign in EOLE reactor facility of fibre Bragg grating sensors dedicated to the online temperature measurement in critical reactor facilities (SOMETIME project)
- 2007High speed real-time contact measurements between a smart train pantograph with embedded Fibre Bragg Grating sensors and its Overhead Contact Line
Places of action
Organizations | Location | People |
---|
document
Ultrasonic Guided Waves Measurements using Bragg Gratings in Optical Fibers under Varying Environmental Conditions
Abstract
Fiber Bragg Gratings (FBGs) are promising ultrasound transducers, especially for Structural Health Monitoring (SHM), since they can be seamlessly integrated into structures and multiplexed, and can also sustain harsh environments (extreme temperatures, radiations, electromagnetic environments…). However, their widespread use for ultrasound measurements has been limited until now because the sensitivity of the edge filtering technique, as implemented so far, is strongly impacted by environmental conditions such as temperature or deformation of the host structure, leading to a loss in sensitivity. Indeed, edge filtering is based on a narrow band light source locked on the side of the reflection spectrum of the FBG. Under varying environmental conditions, this reflection spectrum will shift and, without proper action, the setting will be lost. We present here a solution enabling measurements under varying environmental conditions based on the low frequency tracking of the setting point in order to keep the sensitivity of this method at an acceptable level. The tracking is based on a retroaction loop on the DC output of the photodiode, giving an image of the relative position of the narrow band light source and the reflection spectrum of the FBG. The setup was successfully tested during the 4-points bending test of a composite panel sollicited at increasing strain rates.