Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Knowles, David M.

  • Google
  • 19
  • 59
  • 163

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2024A correlative approach to evaluating the links between local microstructural parameters and creep initiated cavities4citations
  • 2024Productive Automation of Calibration Processes for Crystal Plasticity Model Parameters via Reinforcement Learning1citations
  • 2024Calibration and surrogate model-based sensitivity analysis of crystal plasticity finite element modelscitations
  • 2024Towards a Data-Driven Evolutionary Model of the Cyclic Behaviour of Austenitic Steelscitations
  • 2024Effect of grain boundary misorientation and carbide precipitation on damage initiation45citations
  • 2023Exploring 3D X-Ray Diffraction Method to Validate Approaches in Materials Modellingcitations
  • 2022A method to extract slip system dependent information for crystal plasticity models1citations
  • 2022The effects of internal stresses on the creep deformation investigated using in-situ synchrotron diffraction and crystal plasticity modelling7citations
  • 2021Comparing Techniques for Quantification of Creep Cavitiescitations
  • 2021The role of grain boundary ferrite evolution and thermal aging on creep cavitation of type 316H austenitic stainless steel37citations
  • 2021Evaluation of fracture toughness and residual stress in AISI 316L electron beam welds9citations
  • 2020Microstructure-informed, predictive crystal plasticity finite element model of fatigue-dwells17citations
  • 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffraction7citations
  • 2020A novel insight into the primary creep regeneration behaviour of a polycrystalline material at high-temperature using in-situ neutron diffraction7citations
  • 2020The role of grain boundary orientation and secondary phases in creep cavity nucleation of a 316h boiler header2citations
  • 2019Effect of Plasticity on Creep Deformation in Type 316h Stainless Steelcitations
  • 2019Development of Fatigue Testing System for in-situ Observation of Stainless Steel 316 by HS-AFM & SEM9citations
  • 2018Influence of prior cyclic plasticity on creep deformation using crystal plasticity modelling17citations
  • 2018Comparison of predicted cyclic creep damage from a multi-material weldment FEA model and the traditional r5 volume 2/3 weldment approachcitations

Places of action

Chart of shared publication
He, Siqi
4 / 5 shared
Fernandez-Caballero, Antonio
1 / 1 shared
Martin, Tomas L.
6 / 38 shared
Thomas, Peter J.
1 / 1 shared
Flewitt, Peter E. J.
5 / 32 shared
Salvini, Michael
2 / 4 shared
Mostafavi, Mahmoud
13 / 58 shared
Moore, Stacy R.
2 / 11 shared
Horton, Edward W.
1 / 2 shared
Galliopoulou, Eirini C.
1 / 2 shared
Elmukashfi, E.
1 / 9 shared
Tasdemir, Burcu
1 / 4 shared
Das, Suchandrima
1 / 6 shared
Martin, Michael
1 / 3 shared
Lee, Jonghwan
1 / 1 shared
Dorward, Hugh M. J.
2 / 2 shared
Demir, Eralp
3 / 9 shared
Peel, Matthew J.
2 / 8 shared
Truman, Christopher
3 / 12 shared
Grilli, Nicolò
1 / 15 shared
Agius, Dylan
2 / 5 shared
Ball, James A. D.
1 / 8 shared
Ramadhan, Ranggi S.
1 / 4 shared
Collins, David M.
1 / 9 shared
Mostavafi, Mahmoud
1 / 2 shared
Mamun, Abdullah Al
6 / 13 shared
Agius, Dylan J.
4 / 4 shared
Truman, Christopher E.
4 / 50 shared
Reinhard, Christina
2 / 30 shared
Simpson, Chris A.
1 / 1 shared
Fernández-Caballero, A.
1 / 5 shared
He, S.
1 / 8 shared
Shang, H.
1 / 4 shared
Warren, A. D.
2 / 16 shared
Horne, Graeme
1 / 8 shared
Kabra, Saurabh
3 / 17 shared
Palmer, Iain
1 / 2 shared
Simpson, Christopher A.
3 / 9 shared
Mokhtarishirazabad, Mehdi
1 / 14 shared
Moffat, Andrew
1 / 4 shared
Wang, Yiqiang
1 / 9 shared
Lee, Tung Lik
1 / 2 shared
Lik Lee, Tung
1 / 1 shared
Simpson, Chris
1 / 2 shared
Warren, Alexander D.
1 / 3 shared
Shang, Hao
1 / 2 shared
Agius, D.
1 / 2 shared
Simpson, C.
1 / 8 shared
Mamun, A. Al
1 / 1 shared
Mostafavi, M.
1 / 26 shared
Erinosho, T.
1 / 5 shared
Payam, Amir Farokh
1 / 2 shared
Payton, Oliver
1 / 12 shared
Picco, Loren
1 / 10 shared
Venkata, K. Abburi
1 / 3 shared
Erinosho, T. O.
1 / 5 shared
Truman, C. E.
1 / 15 shared
Elagha, Feras
1 / 1 shared
Tanner, David
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018

Co-Authors (by relevance)

  • He, Siqi
  • Fernandez-Caballero, Antonio
  • Martin, Tomas L.
  • Thomas, Peter J.
  • Flewitt, Peter E. J.
  • Salvini, Michael
  • Mostafavi, Mahmoud
  • Moore, Stacy R.
  • Horton, Edward W.
  • Galliopoulou, Eirini C.
  • Elmukashfi, E.
  • Tasdemir, Burcu
  • Das, Suchandrima
  • Martin, Michael
  • Lee, Jonghwan
  • Dorward, Hugh M. J.
  • Demir, Eralp
  • Peel, Matthew J.
  • Truman, Christopher
  • Grilli, Nicolò
  • Agius, Dylan
  • Ball, James A. D.
  • Ramadhan, Ranggi S.
  • Collins, David M.
  • Mostavafi, Mahmoud
  • Mamun, Abdullah Al
  • Agius, Dylan J.
  • Truman, Christopher E.
  • Reinhard, Christina
  • Simpson, Chris A.
  • Fernández-Caballero, A.
  • He, S.
  • Shang, H.
  • Warren, A. D.
  • Horne, Graeme
  • Kabra, Saurabh
  • Palmer, Iain
  • Simpson, Christopher A.
  • Mokhtarishirazabad, Mehdi
  • Moffat, Andrew
  • Wang, Yiqiang
  • Lee, Tung Lik
  • Lik Lee, Tung
  • Simpson, Chris
  • Warren, Alexander D.
  • Shang, Hao
  • Agius, D.
  • Simpson, C.
  • Mamun, A. Al
  • Mostafavi, M.
  • Erinosho, T.
  • Payam, Amir Farokh
  • Payton, Oliver
  • Picco, Loren
  • Venkata, K. Abburi
  • Erinosho, T. O.
  • Truman, C. E.
  • Elagha, Feras
  • Tanner, David
OrganizationsLocationPeople

document

Exploring 3D X-Ray Diffraction Method to Validate Approaches in Materials Modelling

  • Knowles, David M.
  • Agius, Dylan
  • Ball, James A. D.
  • Demir, Eralp
  • Ramadhan, Ranggi S.
  • Collins, David M.
  • Mostavafi, Mahmoud
  • Mamun, Abdullah Al
Abstract

Cyclic high temperature deformation, which is a precursor to creep-fatigue damage is one of the main life limiting factors in thermal power plants. Microstructurally informed models such as crystal plasticity have shown great promise in predicting cyclic plasticity and creep deformation; however, further validation of predicted meso-scale deformation is required to ensure accurate damage calculations. Here, a novel 3D X-ray diffraction (3DXRD) experiment was performed to resolve and investigate the response of individual grains within a polycrystalline material under loading at elevated temperature. Specimens were made from 316H stainless steel, which is an alloy commonly used for critical structural components in thermal power generation plants. The 3DXRD experiments were conducted at the UK national synchrotron facility, Diamond Light Source. The measurements provided positions, strain tensors, and orientations of individual grains within a gauge volume. The data generated from 3DXRD was used both as an input and for the validation of a crystal plasticity finite element model (CPFE). The results provided demonstrate the importance of microstructural information in materials modelling.<br/><br/>

Topics
  • impedance spectroscopy
  • grain
  • stainless steel
  • x-ray diffraction
  • experiment
  • fatigue
  • plasticity
  • crystal plasticity
  • creep
  • diffraction method