Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lambai, Aloshious

  • Google
  • 11
  • 43
  • 120

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024In-situ SEM micropillar compression and nanoindentation testing of SU-8 polymer up to 1000 s−1 strain rate6citations
  • 2024Correlated high throughput nanoindentation mapping and microstructural characterization of wire and arc additively manufactured 2205 duplex stainless steel3citations
  • 2023Effect of stiff substrates on enhancing the fracture resistance of Barium Titanate thin films2citations
  • 2023Evolution of alumina phase structure in thermal plasma processing13citations
  • 2023Evolution of alumina phase structure in thermal plasma processing13citations
  • 2022Effect of Welding Direction and Bead Pattern in Alloy 52 / SA508 Repair Weldcitations
  • 2022Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymers40citations
  • 2021Multistage Reversible Tg Photomodulation and Hardening of Hydrazone-Containing Polymers40citations
  • 2020A52M/SA52 Dissimilar Metal RPV Repair Weld: Experimental Evaluation and Post-Weld Characterizations1citations
  • 2020A52M/SA52 Dissimilar Metal RPV Repair Weld:Experimental Evaluation and Post-Weld Characterizations1citations
  • 2020A52M/SA52 Dissimilar Metal RPV Repair Weld : Experimental Evaluation and Post-Weld Characterizations1citations

Places of action

Chart of shared publication
Kanerva, Mikko Samuli
1 / 30 shared
Cherukuri, Rahul
2 / 4 shared
Ramachandramoorthy, Rajaprakash
1 / 14 shared
Kallio, Pasi
1 / 16 shared
Sarlin, Essi Linnea
1 / 51 shared
Väliaho, Jari
1 / 1 shared
Mohanty, Gaurav
10 / 33 shared
Sukki, Lassi
1 / 1 shared
Hascoët, Jean-Yves
1 / 6 shared
Dalal, Manasi Sameer
1 / 1 shared
Queguineur, Antoine
1 / 11 shared
Flores Ituarte, Inigo
1 / 3 shared
Peura, Pasi
1 / 56 shared
Mathews, Nidhin George
1 / 3 shared
Venkataramani, N.
1 / 3 shared
Jaya, Balila Nagamani
1 / 2 shared
Dehm, Gerhard
1 / 58 shared
Kivikytö-Reponen, Päivi
2 / 21 shared
Frankberg, Erkka
2 / 9 shared
Lagerbom, Juha
2 / 66 shared
Honkanen, Mari
3 / 22 shared
Varis, Tommi
2 / 54 shared
Levänen, Erkki
1 / 20 shared
Kaunisto, Kimmo
2 / 17 shared
Levänen, Raimo Erkki
1 / 37 shared
Honkanen, Mari Hetti
1 / 59 shared
Huotilainen, Caitlin
3 / 14 shared
Keinänen, Heikki
2 / 14 shared
Virkkunen, Iikka
3 / 22 shared
Bhusare, Suprit
1 / 2 shared
Nevasmaa, Pekka
3 / 44 shared
Hytönen, Noora
1 / 13 shared
Kuutti, Juha
3 / 17 shared
Priimagi, Arri
2 / 14 shared
Zeng, Hao
2 / 8 shared
Jeliazkov, Laura L.
2 / 2 shared
Yang, Sirun
2 / 2 shared
Aprahamian, Ivan
2 / 2 shared
Harris, Jared D.
2 / 2 shared
Peltonen, Mikko
2 / 5 shared
Sirén, Henrik
1 / 4 shared
Keinanen, Heikki
1 / 1 shared
Siren, Henrik
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Kanerva, Mikko Samuli
  • Cherukuri, Rahul
  • Ramachandramoorthy, Rajaprakash
  • Kallio, Pasi
  • Sarlin, Essi Linnea
  • Väliaho, Jari
  • Mohanty, Gaurav
  • Sukki, Lassi
  • Hascoët, Jean-Yves
  • Dalal, Manasi Sameer
  • Queguineur, Antoine
  • Flores Ituarte, Inigo
  • Peura, Pasi
  • Mathews, Nidhin George
  • Venkataramani, N.
  • Jaya, Balila Nagamani
  • Dehm, Gerhard
  • Kivikytö-Reponen, Päivi
  • Frankberg, Erkka
  • Lagerbom, Juha
  • Honkanen, Mari
  • Varis, Tommi
  • Levänen, Erkki
  • Kaunisto, Kimmo
  • Levänen, Raimo Erkki
  • Honkanen, Mari Hetti
  • Huotilainen, Caitlin
  • Keinänen, Heikki
  • Virkkunen, Iikka
  • Bhusare, Suprit
  • Nevasmaa, Pekka
  • Hytönen, Noora
  • Kuutti, Juha
  • Priimagi, Arri
  • Zeng, Hao
  • Jeliazkov, Laura L.
  • Yang, Sirun
  • Aprahamian, Ivan
  • Harris, Jared D.
  • Peltonen, Mikko
  • Sirén, Henrik
  • Keinanen, Heikki
  • Siren, Henrik
OrganizationsLocationPeople

document

Effect of Welding Direction and Bead Pattern in Alloy 52 / SA508 Repair Weld

  • Huotilainen, Caitlin
  • Keinänen, Heikki
  • Virkkunen, Iikka
  • Bhusare, Suprit
  • Nevasmaa, Pekka
  • Hytönen, Noora
  • Kuutti, Juha
  • Mohanty, Gaurav
  • Lambai, Aloshious
Abstract

As nuclear power plants age and their lifetimes are being extended, the possibility and need to perform repairs of safety critical and hard to replace components is ever increasing. For example, defects in the reactor pressure vessel caused by exposure to high temperature, pressure, and corrosive environment together with neutron irradiation are often repaired by different repair welding techniques. Moreover, the need for such repairs may come at short notice requiring that qualified and optimized techniques and solutions are readily available. Developments of repair welding techniques using robotized gas metal arc welding cold metal transfer to repair a linear crack like defect beneath the cladding, which extended into the reactor pressure vessel steel have been presented in previous works [8-9]). In the latest piece of research [10], the repair welding of a thermally embrittled and cladded low-alloy steel plate with two groove excavations filled using Alloy 52 was presented. In the paper, the two welds were characterized with micrographs and microhardness measurements. This work further evaluates in more detail the differences and similarities of the repair welds welded using two different welding directions, 0-degree and 45-degree, and corresponding bead patterns. Residual stresses were measured from the two repair-weld cases using the contour method. Despite significant differences in the weld bead order and consequent welding procedure, the resulting residual stresses were very similar. It was expected that the crisscross weld bead pattern would cause the subsequent weld layers to induce stresses counteracting the previous layer and thus reduce the overall residual stress field. However, this does not appear to be the case. Both weld areas showed tensile stresses around 300 MPa, which is close to the yield stress of the weld material. Balancing compressive stress is induced to the base material with somewhat lower magnitude, peaking around 200 MPa. This indicates that the main determinant of the residual ...

Topics
  • impedance spectroscopy
  • corrosion
  • chromium
  • simulation
  • crack
  • steel
  • hardness
  • nanoindentation
  • electron backscatter diffraction
  • void
  • porosity
  • spectrometry
  • elemental analysis
  • tempering