People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuutti, Juha
VTT Technical Research Centre of Finland
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Constraint effects on fracture toughness of ductile cast iron in the ductile regimecitations
- 2022Effect of Welding Direction and Bead Pattern in Alloy 52 / SA508 Repair Weld
- 2022Sensitivity of the Master Curve reference temperature T0 to the crack front curvaturecitations
- 2022Miniature C(T) Specimens-Pinhole Eccentricity and the Effect of Crack Opening Displacement Measurement Locationcitations
- 2021Evaluation of an Alloy 52 / Cladded Carbon Steel Repair Weld by Cold Metal Transfer
- 2021Online nonlinear ultrasound imaging of crack closure during thermal fatigue loadingcitations
- 2020Numerical assessment of the effects of microcrack interaction in AM componentscitations
- 2020A52M/SA502 Dissimilar Metal RPV Repair Weld:Evaluation of different techniques
- 2020A52M/SA502 Dissimilar Metal RPV Repair Weld
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld:Experimental Evaluation and Post-Weld Characterizationscitations
- 2020A52M/SA52 Dissimilar Metal RPV Repair Weld : Experimental Evaluation and Post-Weld Characterizationscitations
- 2018Comparison of ASME XI and BS7910 Allowable Surface Flaw Size Evaluation Procedures in Piping Componentscitations
- 2017Use of CTOD as crack driving force parameter for low-cycle thermal fatigue
- 2013Disposal canister shock absorber tests and analysis
- 2012A local remeshing procedure to simulate crack propagation in quasi-brittle materialscitations
- 2011Fracture Assessment of Reactor Circuit (FRAS):Advanced numerical fracture assessment methods
- 2010Simulation of ice crushing experiment using FE-model update technique
Places of action
Organizations | Location | People |
---|
document
Evaluation of an Alloy 52 / Cladded Carbon Steel Repair Weld by Cold Metal Transfer
Abstract
Extending the lifetime of existing nuclear power reactors is an increasingly important topic. As the existing fleet of nuclear power reactors ages and approaches the end of their design lifetimes or enters periods of lifetime extension, there is an increased probability for defect repairs due to extended exposure to the operating environment (e.g. high temperature, high pressure, corrosion environment, neutron irradiation, etc.). Concerning repair welding, should a critical need for repair arise, qualified and validated solutions must be readily available for rapid deployment. A proposed method using robotized gas metal arc welding-cold metal transfer to repair a “worst-case” scenario, linear crack like defect beneath the cladding, which extended into the reactor pressure vessel steel, was evaluated on laboratory scale in previous works (PVP2020-21233, PVP2020- 21236). These previous studies demonstrated that cold metal transfer has the potential to produce high quality welds in the case of a reactor pressure repair.<br/><br/>In the current study, the lessons learned from the previous work were applied to repair a postulated surface crack on a thermally embrittled and cladded low alloy steel plate using a nickel base Alloy 52 filler metal. Two excavations were filled using different weld bead arrangements – a traditional pattern (92 weld beads, Q = 0.6 kJ/min) and a 45°-hatch pattern (184 weld beads, Q = 0.9 kJ/min) – by gas metal arc welding-cold metal transfer. No pre-heating or post-weld heat treatment were applied, to remain in line with what can be expected in a real pressure vessel repair situation. The 0° angle pattern acts as a reference for previous studies, while the 45°-hatch pattern, aims to minimize the residual stresses caused by repair welding. Finite element modeling was used to predict the initial (cladded, embrittled and excavated) condition of the steel plate, followed by simulating the welding using the actual welding conditions and material constants for both bead patterns as input parameters. The resulting deformation, strains and stresses created in the material due to repair welding were predicted and the welding’s effectiveness was estimated. In addition, the postrepair weld mechanical properties and microstructure, specifically focusing on the fusion boundary and heat-affected zone, were evaluated using various microscopy techniques and hardness measurements. The outcomes of the performed simulations, corresponding characterizations and lessons learned are presented in this study.