Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Buehner, Mike

  • Google
  • 2
  • 5
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Application of Digital Image Correlation in Cross Weld Tensile Testing: Test Method Validation2citations
  • 2020Cross Weld Tensile Testing With Digital Image Correlation to Determine Local Strain Response3citations

Places of action

Chart of shared publication
Siefert, William
2 / 2 shared
Alexandrov, Boian
2 / 3 shared
Society, American Welding
1 / 10 shared
Rule, James
1 / 1 shared
Penso, Jorge A.
1 / 1 shared
Chart of publication period
2023
2020

Co-Authors (by relevance)

  • Siefert, William
  • Alexandrov, Boian
  • Society, American Welding
  • Rule, James
  • Penso, Jorge A.
OrganizationsLocationPeople

document

Cross Weld Tensile Testing With Digital Image Correlation to Determine Local Strain Response

  • Siefert, William
  • Rule, James
  • Alexandrov, Boian
  • Penso, Jorge A.
  • Buehner, Mike
Abstract

<jats:title>Abstract</jats:title><jats:p>Qualification for weld strength is typically accomplished using cross weld tensile testing. This style of testing only gives the global behavior of the welded joint and limited materials properties, such as elongation at failure and tensile strength of the material where final failure occurs. Qualification for welded structures usually requires the weldment fails in the base metal. Final failure in cross weld tensile tests in the base metal does not provide information about the actual weld metal and heat affected zone properties. There may be weaker points in the microstructure that cannot be identified in a global cross weld tensile test due to being constrained by surrounding microstructures. Additionally, the traditional cross weld tensile test does not quantify how strain accumulates and transfers in the microstructure at various loads. Using Digital Image Correlation (DIC) in combination with tensile testing, local strain of the various microstructures present across the weld was obtained for ferritic to austenitic dissimilar metal welds (DMW), as well as for a typical “matching” ferritic steel filler metal weld with a higher tensile strength than the base metal. This test also showed where and how strain accumulated and transferred during tensile loading of various welded microstructures. Local yield stresses of each region were also obtained. Obtaining such local properties provides insight into design and service limits of welded components in service.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • strength
  • steel
  • tensile strength