Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kraus, Matthias

  • Google
  • 1
  • 3
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Modelling of a Stud Arc Welding Joint for Temperature Field, Microstructure Evolution and Residual Stress4citations

Places of action

Chart of shared publication
Asadi, Mahyar
1 / 1 shared
Soltanzadeh, Hadi
1 / 1 shared
Hildebrand, Jörg
1 / 18 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Asadi, Mahyar
  • Soltanzadeh, Hadi
  • Hildebrand, Jörg
OrganizationsLocationPeople

document

Modelling of a Stud Arc Welding Joint for Temperature Field, Microstructure Evolution and Residual Stress

  • Asadi, Mahyar
  • Soltanzadeh, Hadi
  • Kraus, Matthias
  • Hildebrand, Jörg
Abstract

<jats:p>This paper presents a modelling study and analysis performed on a stud welding including thermal, microstructure and stress calculation. The main concern of this work is toward controlling undesirable residual stresses and the evolution of material properties, as well as the chance of estimating cracks especially with regard to future services of structures. Historically, prediction of welding features is being pursued by welding engineers to enable them for optimal design and mitigation of adverse effects. Stud welding is among the welding processes that are not often addressed by means of modelling and associated activities to develop a comprehensive valid prediction. The aim of this research is to present a modelling practice for a stud weld joint to capture the transient thermal profile, consequent evolution of microstructural phase fractions, and stress calculation using a thermomechanical model based on FE methods (SYSWELD package). The material properties are fed into the model as temperature dependent. The microstructure model is based on t8/5 cooling trajectory on CCT diagram that captures transformation from Austenite phase, and the residual stress calculation is compared to experimental measurement for the sake of validation.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • crack