People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Smith, Mike C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Modelling the Effect of Residual Stresses on Damage Accumulation Using a Coupled Crystal Plasticity Phase Field Fracture Approach
- 2023Bridging Length Scales Efficiently Through Surrogate Modellingcitations
- 2022Measuring the effect of post-weld heat treatment on residual stress relaxation in electron beam welds made of low alloy pressure vessel steel using the contour method
- 2021Magneto-hydrodynamics of multi-phase flows in heterogeneous systems with large property gradientscitations
- 2019Residual stresses in arc and electron-beam welds in 130 mm thick SA508 steelcitations
- 2019Residual stresses in arc and electron-beam welds in 130 mm thick SA508 steelcitations
- 2019Phase-Field Simulation of Grain Boundary Evolution In Microstructures Containing Second-Phase Particles with Heterogeneous Thermal Propertiescitations
- 2019A Semi-Analytical Solution for the Transient Temperature Field Generated by a Volumetric Heat Source Developed for the Simulation of Friction Stir Weldingcitations
- 2019Measurement and Prediction of Phase Transformation Kinetics in a Nuclear Steel During Rapid Thermal Cyclescitations
- 2019Material Characterization on the Nickel-Based Alloy 600/82 NeT-TG6 Benchmark Weldmentscitations
- 2019Effects of dilution on alloy content and microstructure in multi-pass steel weldscitations
- 2018Numerical simulation of grain boundary carbides evolution in 316H stainless steelcitations
- 2018Residual Stress Distributions in Arc, Laser and Electron-Beam Welds in 30 mm Thick SA508 Steelcitations
- 2017An Evaluation of Multipass Narrow Gap Laser Welding as a Candidate Process for the Manufacture of Nuclear Pressure Vesselscitations
- 2017The impact of transformation plasticity on the electron beam welding of thick-section ferritic steel componentscitations
- 2017The NeT Task Group 4 residual stress measurement and analysis round robin on a three-pass slot-welded plate specimencitations
- 2016Residual stresses in thick-section electron beam welds in RPV steelscitations
- 2015Rousselier Parameter Calibration for Esshete Weld Metalcitations
- 2014Finite Element Simulation of a Circumferential Through-Thickness Crack in a Cylindercitations
- 2014Understanding the Impact of High-Magnitude Repair-Weld Residual Stresses on Ductile Crack Initiation and Growth: The STYLE Mock-Up 2 Large Scale Testcitations
Places of action
Organizations | Location | People |
---|
document
Rousselier Parameter Calibration for Esshete Weld Metal
Abstract
<jats:p>This paper describes an investigation concerning calibration of the Rousselier ductile damage model parameters for an industrial grade weld material (Esshete 1250). Parameters such as σ1 and the mesh size (Lc) were calibrated using numerical models of tensile and fracture toughness test specimens (smooth round bar and side-grooved compact-tension (CT) types) and adopting the Rousselier damage model as a constitutive relation. The process of parameter calibration was investigated by comparing the numerical load-displacement, crack initiation and growth predictions with experimental data measured using the two test geometries. It was found that it was not possible to obtain a single set of parameters which provided a good agreement between numerical predictions and experimental behaviour for both smooth tensile bar and CT specimen due to the difference in the failure mechanism of these specimens. Therefore, experimental J-R curve data determined from unload-compliance CT laboratory specimen fracture toughness tests of Esshete weld material were used to determine the values of these two parameters. The calibration results showed that the values of σ1 affect the change of the slope of J-R curve, whereas an increase in Lc elevates the crack growth resistance. The ductile fracture behaviour of the weld material is best simulated using the value of Lc = 50 μm and σ1 = 506 MPa. A detailed description of the numerical approach and calibration steps undertaken are provided.</jats:p>